DOI QR코드

DOI QR Code

Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites

  • Kim, B.R. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Pyo, S.H. (Department of Civil and Environmental Engineering, University of Michigan) ;
  • Lemaire, G. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, H.K. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2010.12.01
  • Accepted : 2011.05.23
  • Published : 2011.09.25

Abstract

A multiscale modeling scheme that addresses the influence of the nanoparticle size in nanocomposites consisting of nano-sized spherical particles embedded in a polymer matrix is presented. A micromechanics-based constitutive model for nanoparticle-reinforced polymer composites is derived by incorporating the Eshelby tensor considering the interface effects (Duan et al. 2005a) into the ensemble-volume average method (Ju and Chen 1994). A numerical investigation is carried out to validate the proposed micromechanics-based constitutive model, and a parametric study on the interface moduli is conducted to investigate the effect of interface moduli on the overall behavior of the composites. In addition, molecular dynamics (MD) simulations are performed to determine the mechanical properties of the nanoparticles and polymer. Finally, the overall elastic moduli of the nanoparticle-reinforced polymer composites are estimated using the proposed multiscale approach combining the ensemble-volume average method and the MD simulation. The predictive capability of the proposed multiscale approach has been demonstrated through the multiscale numerical simulations.

Keywords

References

  1. Adnan, A., Sun, C.T. and Mahfuz, H. (2007), "A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites", Compos. Sci. Technol., 67, 348-356. https://doi.org/10.1016/j.compscitech.2006.09.015
  2. Boutaleb, S., Zaïri, F., Mesbah, A., Naït-Abdelaziz, M., Gloaguen, J.M., Boukharouba, T. and Lefebvre, J.M. (2009), "Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites", Int. J. Solids Struct., 46, 1716-1726. https://doi.org/10.1016/j.ijsolstr.2008.12.011
  3. Chen, T., Dvorak, G.J. and Yu, C.C. (2007), "Size-dependent elastic properties of unidirectional nano-composites with interface stresses", Acta Mechanica, 188, 39-54. https://doi.org/10.1007/s00707-006-0371-2
  4. Chen, H., Hu, G. and Huang, Z.P. (2007), "Effective moduli for micropolar composite with interface effect", Int. J. Solids Struct., 44, 8106-8118. https://doi.org/10.1016/j.ijsolstr.2007.06.001
  5. Cho, J., Joshi, M.S. and Sun, C.T. (2006), "Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles", Compos. Sci. Technol., 66, 1941-1952. https://doi.org/10.1016/j.compscitech.2005.12.028
  6. Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T. (1988), "Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drugreceptor system", Proteins: Struct. function Bioinformatics, 4, 31-47. https://doi.org/10.1002/prot.340040106
  7. Dingreville, R., Qu, J. and Cherkaoui, M. (2005), "Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films", J. Mech. Phys. Solids, 53, 1827-1854. https://doi.org/10.1016/j.jmps.2005.02.012
  8. Duan, H.L., Wang, J., Huang, Z.P. and Karihaloo, B.L. (2005a), "Eshelby formalism for nano-inhomogeneities", Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 461, 3335-3353. https://doi.org/10.1098/rspa.2005.1520
  9. Duan, H.L., Wang, J., Huang, Z.P. and Luo, Z.Y. (2005b), "Stress concentration tensors of inhomogeneities with interface effects", Mech. Mater., 37, 723-736. https://doi.org/10.1016/j.mechmat.2004.07.004
  10. Fermeglia, M. and Pricl, S. (2007), "Multiscale modeling for polymer systems of industrial interest", Prog. Org. Coat., 58, 187-199. https://doi.org/10.1016/j.porgcoat.2006.08.028
  11. Glotzer, S.C. and Paul, W. (2002), "Molecular and mesoscale simulation polymers", Ann. Rev. Mater. Res., 32, 401-436. https://doi.org/10.1146/annurev.matsci.32.010802.112213
  12. Gurtin, M.E. and Murdoch, A.I. (1975a), "A continuum theory of elastic material surfaces", Arch. Rat. Mech. Anal., 57, 291-323.
  13. Gurtin, M.E. and Murdoch, A.I. (1975b), "Addenda to our paper: a continuum theory of elastic material surfaces", Arch. Rat. Mech. Anal., 59, 389-390.
  14. Guz, A.N. and Guz, I.A. (2006), "On models in the theory of stability of multiwalled carbon nanotubes in matrix", Int. Appl. Mech., 42, 617-628. https://doi.org/10.1007/s10778-006-0129-5
  15. Hergenrother, P.M., Watson, K.A., Smith Jr, J.G., Connell, J.W. and Yokota, R. (2002), "Polyimides from 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride and aromatic diamines", Polymer, 43, 5077-5093. https://doi.org/10.1016/S0032-3861(02)00362-2
  16. Ikuta, D., Kawame, N., Banno, S., Hirajima, T., Ito, K., Rakovan, J.F., Downs, R.T. and Tamada, O. (2007), "First in situ X-ray identification of coesite and retrograde quartz on a glass thin section of an ultrahighpressure metamorphic rock and their crystal structure details", Am. Mineral., 92, 57-63. https://doi.org/10.2138/am.2007.2228
  17. Ju, J.W. and Chen, T.M. (1994), "Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities", Acta Mechanica, 103, 123-144. https://doi.org/10.1007/BF01180222
  18. Kuo, M.C., Tsai, C.M., Huang, J.C. and Chen, M. (2005), "PEEK composites reinforced by nano-sized $SiO_{2}$ and $Al_{2}O_{3}$ particulates", Mater. Chem. Phys., 90, 185-195. https://doi.org/10.1016/j.matchemphys.2004.10.009
  19. Lee, H.K. and Pyo, S.H. (2007), "Micromechanics-based elastic damage modeling of particulate composites with weakened interfaces", Int. J. Solids Struct., 44, 8390-8406. https://doi.org/10.1016/j.ijsolstr.2007.06.019
  20. Li, Z.R., Lim, C.W. and He, L.H. (2006), "Stress concentration around a nano-scale spherical cavity in elastic media: effect of surface stress", Eur. J. Mech. A - Solid., 25, 260-270. https://doi.org/10.1016/j.euromechsol.2005.09.005
  21. Liang, Z., Lee, H.K. and Suaris, W. (2006), "Micromechanics-based constitutive modeling for unidirectional laminated composites", Int. J. Solids Struct., 43, 5674-5689. https://doi.org/10.1016/j.ijsolstr.2005.08.020
  22. Lim, C.W. and He, L.H. (2004), "Size-dependent nonlinear response of thin elastic films with nano-scale thickness", Int. J. Mech. Sci., 46, 1715-1726. https://doi.org/10.1016/j.ijmecsci.2004.09.003
  23. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11, 139-147. https://doi.org/10.1088/0957-4484/11/3/301
  24. Odegard, G.M., Clancy, T.C. and Gates, T.S. (2005), "Modeling of the mechanical properties of nanoparticle/polymer composites", Polymer, 46, 553-562. https://doi.org/10.1016/j.polymer.2004.11.022
  25. Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), "Generalized gradient approximation made simple", Phys. Rev. Lett., 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  26. Rojek, J. and Onate, E. (2008), "Multiscale analysis using a coupled discrete/finite element model", Interact. Multiscale Mech., 1(1), 1-31. https://doi.org/10.12989/imm.2008.1.1.001
  27. Scocchi, G., Posocco, P., Fermeglia, M. and Pricl, S. (2007), "Polymerclay nanocomposites: a multiscale molecular modeling approach", J. Phys. Chem. B, 111, 2143-2151. https://doi.org/10.1021/jp067649w
  28. Sharma, P., Ganti, S. and Bhate, N. (2003), "Effect of surfaces on the size-dependent elastic state of nanoinhomogeneities", Appl. Phys. Lett., 82, 535-537. https://doi.org/10.1063/1.1539929
  29. Srinivas, S., Caputo, F.E., Graham, M., Gardner, S., Davis, R.M., Mc-Grath, J.E. and Wilkes, G.L. (1997), "Semicrystalline polyimides based on controlled molecular weight phthalimide end-capped 1, 3-bis (4-aminophenoxy) benzene and 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride: synthesis, crystallization, melting, and thermal stability", Macromolecules, 30, 1012-1022. https://doi.org/10.1021/ma9604597
  30. Walpole, L.J. (1981), "Elastic behaviour of composite materials: theoretical foundations", Adv. Appl. Mech. (ed. Chia-Shun Yih), 21, 169-242, New York, Academic Press. https://doi.org/10.1016/S0065-2156(08)70332-6
  31. Wang, G.F., Feng, X.Q., Wang, T.J. and Gao, W. (2008), "Surface effects on the near-tip stresses for mode-I and mode-III cracks", J. Appl. Mech., 75, 011001 1-5. https://doi.org/10.1115/1.2712233
  32. Yang, F.Q. (2004), "Size-dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations", J. Appl. Phys., 95, 3516-3520. https://doi.org/10.1063/1.1664030
  33. Zhao, H. and Aluru, N.R. (2008), "Molecular dynamics simulation of bulk silicon under strain", Interact. Multiscale Mech., 1(2), 303-315. https://doi.org/10.12989/imm.2008.1.2.303
  34. Zeng, Q.H., Yu, A.B., and Lu, G.Q. (2008), "Multiscale modeling and simulation of polymer nanocomposites", Prog. Polym. Sci., 33, 191-269. https://doi.org/10.1016/j.progpolymsci.2007.09.002
  35. Zhang, W.X., Wang, T.J. and Chen, X. (2008), "Effect of surface stress on the asymmetric yield strength of nanowires", J. Appl. Phys., 103, 1235271-5.

Cited by

  1. A combined molecular dynamics/micromechanics/finite element approach for multiscale constitutive modeling of nanocomposites with interface effects vol.103, pp.24, 2013, https://doi.org/10.1063/1.4819383
  2. Strain rate and adhesive energy dependent viscoplastic damage modeling for nanoparticulate composites: Molecular dynamics and micromechanical simulations vol.104, pp.10, 2014, https://doi.org/10.1063/1.4868034
  3. ABC optimization of TMD parameters for tall buildings with soil structure interaction vol.6, pp.4, 2013, https://doi.org/10.12989/imm.2013.6.4.339
  4. Elastoplastic modeling of polymeric composites containing randomly located nanoparticles with an interface effect vol.99, 2013, https://doi.org/10.1016/j.compstruct.2012.11.043
  5. Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.6, pp.3, 2013, https://doi.org/10.12989/imm.2013.6.3.271
  6. Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.3, pp.4, 2014, https://doi.org/10.12989/csm.2014.3.4.329
  7. Elastoplastic Behavior of Unidirectional Hybrid Composites Containing SiO2 Nanoparticles Under Transverse Tension vol.44, pp.2, 2011, https://doi.org/10.1007/s40997-018-0265-7