DOI QR코드

DOI QR Code

Influence of grain interaction on lattice strain evolution in two-phase polycrystals

  • Han, Tong-Seok (School of Civil and Environmental Engineering, Yonsei University)
  • 투고 : 2010.11.11
  • 심사 : 2011.02.26
  • 발행 : 2011.06.25

초록

The lattice strain evolution within polycrystalline solids is influenced by the crystal orientation and grain interaction. For multi-phase polycrystals, due to potential large differences in properties of each phase, lattice strains are even more strongly influenced by grain interaction compared with single phase polycrystals. In this research, the effects of the grain interaction and crystal orientation on the lattice strain evolution in a two-phase polycrystals are investigated. Duplex steel of austenite and ferrite phases with equal volume fraction is selected for the analysis, of which grain arrangement sensitivity is confirmed in the literature through both experiment and simulation (Hedstr$\ddot{o}$m et al. 2010). Analysis on the grain interaction is performed using the results obtained from the finite element calculation based on the model of restricted slip within crystallographic planes. The dependence of lattice strain on grain interactions as well as crystal orientation is confirmed and motivated the need for more in-depth analysis.

키워드

참고문헌

  1. Barton, N., Dawson, P. and Miller, M. (1999), "Plastic stress-strain relations of fcc polycrystalline metals hardening according to the Taylor rule", J. Eng. Mater. Technol., 12, 230-239.
  2. Chung, J.S. and Ice, G. (1999), "Automated indexing for texture and strain measurement with broadband pass xray microbeams", J. Appl. Phys., 86(9), 5249-5255. https://doi.org/10.1063/1.371507
  3. Han, T.S. and Dawson, P.R. (2005), "Lattice strain partitioning in a two-phase alloy and its redistribution upon yielding", Mater. Sci. Eng. A, 405, 18-33. https://doi.org/10.1016/j.msea.2005.05.095
  4. Hedstrom, P., Lienert, U.L., Almer, J. and Oden, M. (2008), "Elastic strain evolution and $\varepsilon$-martensite formation in individual austenite grains during in situ loading of a metastable stainless steel", Mater. Lett., 62, 338-340. https://doi.org/10.1016/j.matlet.2007.05.054
  5. Hedstrom, P., Han, T.S., Lienert, U.L., Almer, J. and Oden, M. (2010), "Load partitioning between single bulk grains in a two-phase duplex stainless steel during tensile loading", Acta Mater., 58, 734-744. https://doi.org/10.1016/j.actamat.2009.09.053
  6. Hutchinson, J.W. (1976), "Bounds and self-consistent estimates for creep of polycrystalline materials", Proceedings of Royal Society of London, Series A, 348(1652), 101-127. https://doi.org/10.1098/rspa.1976.0027
  7. Kelly, A., Groves, W. and Kidd, P. (2000), Crystallography and crystal defects, John Wiley & Sons Ltd., Revised edition.
  8. Kocks, U.F. (1960), "Polyslip in single crystals", Acta Metal., 8(6), 345-352. https://doi.org/10.1016/0001-6160(60)90001-8
  9. Kocks, U.F., Tome, C.N. and Wenk, H.R. (1998), Texture and anisotropy, Cambridge Press, Cambridge.
  10. Lauridsen, E.M., Schmidt, S., Suter, R.M. and Poulsen, H.F. (2001), "Tracking: a method for structural characterization of grains in powders or polycrystals", J. Appl. Crystallogr., 34, 744-750. https://doi.org/10.1107/S0021889801014170
  11. Lienert, U., Han, T.S., Almer, J., Dawson, P.R., Leffers, T., Margulies, L., Nielsen, S.F., Poulsen, H.F. and Schmidt, S. (2004), "Investigating the effect of grain interaction during plastic deformation of copper", Acta Mater., 52, 4461-4467. https://doi.org/10.1016/j.actamat.2004.05.051
  12. Margulies, L., Lorentzen, T., Poulsen, H.F. and Leffers, T. (2002), "Strain tensor development in a single grain in the bulk of a polycrystal under loading", Acta Mater., 50(7), 1771-1779. https://doi.org/10.1016/S1359-6454(02)00028-9
  13. Marin, E.B. and Dawson, P.R. (1998a), "On modelling the elasto-viscoplastic response of metals using polycrystal plasticity", Comput. Method. Appl. M., 165, 1-21. https://doi.org/10.1016/S0045-7825(98)00034-6
  14. Marin, E.B. and Dawson, P.R. (1998b), "Elastoplastic finite element analyses of metal deformations using polycrystal constitutive models", Comput. Method. Appl. M., 165, 23-41. https://doi.org/10.1016/S0045-7825(98)00033-4
  15. Matous, K. and Maniatty, A.M. (2009), "Multiscale modeling of elasto-viscoplastic polycrystals subject to finite deformation", Interact. Multiscale Mech., 2(4), 375-396. https://doi.org/10.12989/imm.2009.2.4.375
  16. Miller, M.P., Park, J.S., Dawson, P.R. and Han, T.S. (2008), "Measuring and modeling distributions of stress state in deforming polycrystals", Acta Mater., 56, 3927-3939. https://doi.org/10.1016/j.actamat.2008.04.062
  17. Poulsen, H.F., Nielsen, S.F., Schmidt, S., Lauridsen, E.M., Suter, R.M., Lienert, U., Margulies, L., Lorentzen, T. and Jensen, D.J. (2001), "Three-dimensional maps of grain boundaries and the stress state of individual grains inpolycrystals and powders", J. Appl. Crystallogr., 34, 751-756. https://doi.org/10.1107/S0021889801014273
  18. Ritz, H., Dawson, P.R. and Marin, T. (2010), "Analyzing the orientation dependence of stresses in polycrytals using vertices of the single crystal yield surface and crystallographic fibers of orientation space", J. Mech. Phys. Solids, 58, 54-72. https://doi.org/10.1016/j.jmps.2009.08.007
  19. Voce, E. (1948), "The relationship between stress and strain for homogeneous deformation", J. Institute Metal., 74, 537-562.
  20. Zhang, X., Chen, J.S. and Osher, S. (2008), "A multiple level set method for modeling grain boundary evolution of polycrystalline materials", Interact. Multiscale Mech., 1(2), 191-209. https://doi.org/10.12989/imm.2008.1.2.191