References
- Abaqus (2009), ABAQUS Manual, Version 6.9, Simulia, Providence, RI.
- Baer, M.R. and Hall, C.A. (2007), "Isentropic loading experiments of a plastic bonded explosive and constituents", J. Appl. Phys., 101, 034906-034906-12. https://doi.org/10.1063/1.2399881
- Barton, N.R., Winter, N.W. and Reaugh, J.E. (2009), "Defect evolution and pore collapse in crystalline energetic materials", Modell. Simul. Mater. Sci. Eng., 17, 035003. https://doi.org/10.1088/0965-0393/17/3/035003
- Becker, R. (2004), "Effects of crystal plasticity on materials loaded at high pressures and strain rates", Int. J. Plasticity, 20, 1983-2006. https://doi.org/10.1016/j.ijplas.2003.09.002
- Bourne, N.K. and Milne, A.M. (2003), "On cavity collapse and subsequent ignition", Proc. 12th Int. Detonation Symp.(San Diego, CA), ed J.M. Short and D.G. Tasker, 213.
- Bowden, F.P. and Yoffe, A.D. (1952), Initiation and growth of explosions in liquids and solids, Cambridge, Cambridge University Press.
- Dick, J.J., Hooks, D.E., Menikoff, R. and Martinez, A.R. (2004), "Elastic-plastic wave profiles in cyclotetramethylene tetranitramine crystals ", J. Appl. Phys., 96(1), 374-379. https://doi.org/10.1063/1.1757026
- Hooks, D.E. and Ramos, K.J. (2006), "Initiation mechanisms in single crystal explosives: dislocations, elastic limits, and initiation thresholds", Proc. 13th Int. Detonation Symp., Norfolk, VA.
- Kaczmarek, J. (2010), "Collection of dynamical systems with dimensional reduction as a multiscale method of modelling for mechanics of materials", Interact. Multiscale Mech., 3(1), 1-22. https://doi.org/10.12989/imm.2010.3.1.001
- Macri, M. and De, S. (2006), "Modeling the bulk mechanical response of heterogeneous explosives based on microstructural information", 13th International Detonation Symposium, Norfolk, VA.
- Mang, H.A., Aigner, E., Eberhardsteiner, J., Hackspiel, C., Hellmich, C., Hofstetter, K., Lackner, R., Pichler, B., Scheiner, S. and Stürzenbecher, R. (2009), "Computational multiscale analysis in civil engineering", Interact. Multiscale Mech., 2(2), 109-128. https://doi.org/10.12989/imm.2009.2.2.109
- Matou, K. and Maniatty, A.M. (2009), "Multiscale modeling of elasto-viscoplastic polycrystals subjected to finite deformations", Interact. Multiscale Mech., 2(4), 375-396. https://doi.org/10.12989/imm.2009.2.4.375
- Menikoff, R. and Sewell, T.D. (2002), "Constituent properties of HMX needed for meso-scale simulations", Combust. Theor. Model., 6, 103-125. https://doi.org/10.1088/1364-7830/6/1/306
-
Palmer, S.J.P. and Field, J.E. (1982), "The deformation and fracture of
$\beta$ -HMX", Proc. Roy. Soc. Lond. A, 383, 399-407. https://doi.org/10.1098/rspa.1982.0137 -
Rae, P.J., Hooks, D.E. and Liu, C. (2006), "The stress versus strain response of single
$\beta$ -HMX crystals in quasistatic compression", Proceedings of the 13th International Detonation Sysmposium, Norfolk, VA. - Sewell, T.D. and Menikoff, R. (2003), "A molecular dynamics simulation study of elastic properties of HMX", J. Chem. Phys., 19, 7417-7426.
- Taylor, G.I. (1983), "Plastic strain in metals", J. Inst. Met., 62, 307-324.
- Walley, S.M., Field, J.E. and Greenaway, M.W. (2006), "Crystal sensitivities of energetic materials", Mater. Sci. Technol., 22, 402-413. https://doi.org/10.1179/174328406X91122
- Wang, D. and Fang, L. (2010), "A multiscale method for analysis of heterogeneous thin slabs with irreducible three dimensional microstructures", Interact. Multiscale Mech., 3(3), 213-234. https://doi.org/10.12989/imm.2010.3.3.213
-
Yoo, C.S. and Cynn, H. (1999), "Equation of state, phase transition, decomposition of
$\beta$ - HMX", J. Chem. Phys., 111, 10229-10235. https://doi.org/10.1063/1.480341 - Zamiri, A.R., Pourboghrat, F. (2010), "A novel yield function for single crystals based on combined constraints optimization", Int. J. Plasticity, 26, 731-746. https://doi.org/10.1016/j.ijplas.2009.10.004
-
Zamiri, A.R. and De, S. (2010), "Deformation distribution map of
$\beta$ - HMX molecular crystals", J. Phys. D: Appl. Phys., 43, 035404. https://doi.org/10.1088/0022-3727/43/3/035404 - Zhang, X., Chen, J.S. and Osher, S. (2008), "A multiple level set method for modeling grain boundary evolution of polycrystalline materials", Interact. Multiscale Mech., 1(2), 178-191.
Cited by
- Prediction of Growth Habit of β-Cyclotetramethylene-tetranitramine Crystals by the First-Principles Models vol.15, pp.8, 2015, https://doi.org/10.1021/acs.cgd.5b00605
- Prediction of the Crystal Morphology of β-HMX using a Generalized Interfacial Structure Analysis Model vol.18, pp.4, 2011, https://doi.org/10.1021/acs.cgd.7b01764