참고문헌
- Cammarata, R.C. and Sieradzki, K. (1989), "Effects of surface stress on the elastic moduli of thin films and superlattices", Phys. Review Lett., 62(17), 2005-2008. https://doi.org/10.1103/PhysRevLett.62.2005
- Cammarata, R.C. (1994), "Surface and interface stress effects in thin films", Prog. Surf. Sci., 46(1), 1-38.
- Chen, J. and Lee, J.D. (2010), "Atomistic analysis of nano/micro biosensors", Interact. Multiscale Mech., 3(2), 111-121. https://doi.org/10.12989/imm.2010.3.2.111
- Cho, M., Choi, J. and Kim, W. (2009), "Continuum-based bridging model of nanoscale thin film considering surface effects", JPN. J. Appl. Phys., 48, 020219. https://doi.org/10.1143/JJAP.48.020219
- Choi, J., Cho, M. and Kim, W. (2010), "Multiscale analysis of nano-scale thin film considering surface effects : thermomechanical properties", J. Mech. Mater. Struct., 5(1), 161-183. https://doi.org/10.2140/jomms.2010.5.161
- Dingreville, R., Qu, J. and Cherkaous, M. (2005), "Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films", J. Mech. Phys. Solids, 53, 1827-1854. https://doi.org/10.1016/j.jmps.2005.02.012
- Dingreville, R. and Qu, J. (2007), "A semi-analytical method to compute surface elastic properties", Acta Materialia, 55, 141-147. https://doi.org/10.1016/j.actamat.2006.08.007
- Gao, W., Yu, S. and Huang, G. (2006), "Finite element characterization of the size-dependent mechanical behavior in nanosystems", Nanotechnology, 17, 1118-1122. https://doi.org/10.1088/0957-4484/17/4/045
- Guedes, J.M. and Kikuchi, N. (1990), "Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods", Comput. Method. Appl. M., 83, 143-198. https://doi.org/10.1016/0045-7825(90)90148-F
- Gumbsch, P. and Daw, M.S. (1991), "Interface stresses and their effects on the elastic moduli of metallic multilayers", Phys. Rev. B., 44(8), 3934-3938. https://doi.org/10.1103/PhysRevB.44.3934
- Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastics material surfaces", Arch. Ration. Mech. An., 57, 291-323.
- Gurtin, M.E. and Murdoch, A.I. (1975), "Addenda to our paper : a continuum theory of elastics materal surface", Arch. Ration. Mech. An., 57, 291-323.
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
- Hassani, B. (1996), "A direct method to derive the boundary conditions of the homogenization equation for symmetric cells", Commun. Numer. Meth. Eng., 12, 185-196. https://doi.org/10.1002/(SICI)1099-0887(199603)12:3<185::AID-CNM970>3.0.CO;2-2
- Hassani, B. and Hinton, E. (1998), "A review of homogenization and topology optimization II - analytical and numerical solution of homogenization equations", Comput. Struct., 69, 719-738. https://doi.org/10.1016/S0045-7949(98)00132-1
- Hollister, S.J. and Kikuchi, N. (1992), "A comparison of homogenization and standard mechanics analyses for periodic porous composites", Comput. Mech., 10, 73-95. https://doi.org/10.1007/BF00369853
- Michel, J.C., Moulinec, H. and Suquet, P. (1999), "Effective properties of composite materials with periodic microstructure : a computational approach", Comput. Method. Appl. M., 172, 109-143. https://doi.org/10.1016/S0045-7825(98)00227-8
- Miller, R.E. and Shenoy, V.B. (2000), "Size dependent elastic properties of nanosized structural elements", Nanotechnology, 11, 139-147. https://doi.org/10.1088/0957-4484/11/3/301
- Lim, C.W. and He, L.H. (2004), "Size-dependent nonlinear response of thin elastic films with nano-sacle thickness", Int. J. Mech. Sci., 46, 1715-1726. https://doi.org/10.1016/j.ijmecsci.2004.09.003
- Lu, P., He, L.H., Lee, H.P. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solids Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
- Lim, C.W., Li, C. and Yu, J.L. (2009), "The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams", Interact. Multiscale Mech., 2(3), 223-233. https://doi.org/10.12989/imm.2009.2.3.223
- Poncharal P., Wang, Z., Ugarte, D. and deHeer, W.A. (1999), "Electrostatic deflections and electromechanical resonance of carbon nanotubes", Science, 283, 1513-1516. https://doi.org/10.1126/science.283.5407.1513
- Shenoy, V.B. (2005), "Atomistic calculations of elastic properties of metallic fcc crystal surfaces", Phys. Rev. B., 71(9), 094104. https://doi.org/10.1103/PhysRevB.71.094104
- Simmons, G. and Huang, G.L. (1971), Single crystal elastic constants and calculated aggregate properties : a handbook, MIT Press, Cambridge, MA.
- Streitz, F.H., Cammarata, R.C. and Sieradzki, K. (1994), "Surface-stress effects on elastic properties. I. Thin metal films", Phys. Rev. B., 49(15), 10699-10706. https://doi.org/10.1103/PhysRevB.49.10699
- Streitz, F.H., Sieradzki, K. and Cammarata, R.C. (1990), "Elastic properties of thin fcc films", Phys. Rev. B., 41(17), 12285-2287. https://doi.org/10.1103/PhysRevB.41.12285
- Wong, E., Sheehan, P.E. and Liever, C.M. (1997), "Nanobeam mechanics : elasticity, strength, and toughness of nanorods and nanotubes", Science, 277, 1971-1975. https://doi.org/10.1126/science.277.5334.1971
피인용 문헌
- Sequential multiscale analysis on size-dependent mechanical behavior of micro/nano-sized honeycomb structures vol.57, 2013, https://doi.org/10.1016/j.mechmat.2012.10.009
- Energy and force transition between atoms and continuum in quasicontinuum method vol.7, pp.1, 2014, https://doi.org/10.12989/imm.2014.7.1.543
- Stochastic homogenization of nano-thickness thin films including patterned holes using structural perturbation method vol.49, 2017, https://doi.org/10.1016/j.probengmech.2017.08.001
- Pore-scale numerical study of flow and conduction heat transfer in fibrous porous media vol.33, pp.5, 2011, https://doi.org/10.1007/s12206-018-1231-4