DOI QR코드

DOI QR Code

Effective mechanical properties of micro/nano-scale porous materials considering surface effects

  • Jeong, Joonho (Interdisciplinary Program In Automotive Engineering, Seoul National University) ;
  • Cho, Maenghyo (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Choi, Jinbok (Metal Forming Research Group, POSCO Global R&D Center)
  • 투고 : 2010.11.11
  • 심사 : 2011.02.18
  • 발행 : 2011.06.25

초록

Mechanical behavior in nano-sized structures differs from those in macro sized structures due to surface effect. As the ratio of surface to volume increases, surface effect is not negligible and causes size-dependent mechanical behavior. In order to identify this size effect, atomistic simulations are required; however, it has many limitations because too much computational resource and time are needed. To overcome the restrictions of the atomistic simulations and graft the well-established continuum theories, the continuum model considering surface effect, which is based on the bridging technique between atomistic and continuum simulations, is introduced. Because it reflects the size effect, it is possible to carry out a variety of analysis which is intractable in the atomistic simulations. As a part of the application examples, the homogenization method is applied to micro/nano thin films with porosity and the homogenized elastic coefficients of the nano scale thickness porous films are computed in this paper.

키워드

참고문헌

  1. Cammarata, R.C. and Sieradzki, K. (1989), "Effects of surface stress on the elastic moduli of thin films and superlattices", Phys. Review Lett., 62(17), 2005-2008. https://doi.org/10.1103/PhysRevLett.62.2005
  2. Cammarata, R.C. (1994), "Surface and interface stress effects in thin films", Prog. Surf. Sci., 46(1), 1-38.
  3. Chen, J. and Lee, J.D. (2010), "Atomistic analysis of nano/micro biosensors", Interact. Multiscale Mech., 3(2), 111-121. https://doi.org/10.12989/imm.2010.3.2.111
  4. Cho, M., Choi, J. and Kim, W. (2009), "Continuum-based bridging model of nanoscale thin film considering surface effects", JPN. J. Appl. Phys., 48, 020219. https://doi.org/10.1143/JJAP.48.020219
  5. Choi, J., Cho, M. and Kim, W. (2010), "Multiscale analysis of nano-scale thin film considering surface effects : thermomechanical properties", J. Mech. Mater. Struct., 5(1), 161-183. https://doi.org/10.2140/jomms.2010.5.161
  6. Dingreville, R., Qu, J. and Cherkaous, M. (2005), "Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films", J. Mech. Phys. Solids, 53, 1827-1854. https://doi.org/10.1016/j.jmps.2005.02.012
  7. Dingreville, R. and Qu, J. (2007), "A semi-analytical method to compute surface elastic properties", Acta Materialia, 55, 141-147. https://doi.org/10.1016/j.actamat.2006.08.007
  8. Gao, W., Yu, S. and Huang, G. (2006), "Finite element characterization of the size-dependent mechanical behavior in nanosystems", Nanotechnology, 17, 1118-1122. https://doi.org/10.1088/0957-4484/17/4/045
  9. Guedes, J.M. and Kikuchi, N. (1990), "Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods", Comput. Method. Appl. M., 83, 143-198. https://doi.org/10.1016/0045-7825(90)90148-F
  10. Gumbsch, P. and Daw, M.S. (1991), "Interface stresses and their effects on the elastic moduli of metallic multilayers", Phys. Rev. B., 44(8), 3934-3938. https://doi.org/10.1103/PhysRevB.44.3934
  11. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastics material surfaces", Arch. Ration. Mech. An., 57, 291-323.
  12. Gurtin, M.E. and Murdoch, A.I. (1975), "Addenda to our paper : a continuum theory of elastics materal surface", Arch. Ration. Mech. An., 57, 291-323.
  13. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
  14. Hassani, B. (1996), "A direct method to derive the boundary conditions of the homogenization equation for symmetric cells", Commun. Numer. Meth. Eng., 12, 185-196. https://doi.org/10.1002/(SICI)1099-0887(199603)12:3<185::AID-CNM970>3.0.CO;2-2
  15. Hassani, B. and Hinton, E. (1998), "A review of homogenization and topology optimization II - analytical and numerical solution of homogenization equations", Comput. Struct., 69, 719-738. https://doi.org/10.1016/S0045-7949(98)00132-1
  16. Hollister, S.J. and Kikuchi, N. (1992), "A comparison of homogenization and standard mechanics analyses for periodic porous composites", Comput. Mech., 10, 73-95. https://doi.org/10.1007/BF00369853
  17. Michel, J.C., Moulinec, H. and Suquet, P. (1999), "Effective properties of composite materials with periodic microstructure : a computational approach", Comput. Method. Appl. M., 172, 109-143. https://doi.org/10.1016/S0045-7825(98)00227-8
  18. Miller, R.E. and Shenoy, V.B. (2000), "Size dependent elastic properties of nanosized structural elements", Nanotechnology, 11, 139-147. https://doi.org/10.1088/0957-4484/11/3/301
  19. Lim, C.W. and He, L.H. (2004), "Size-dependent nonlinear response of thin elastic films with nano-sacle thickness", Int. J. Mech. Sci., 46, 1715-1726. https://doi.org/10.1016/j.ijmecsci.2004.09.003
  20. Lu, P., He, L.H., Lee, H.P. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solids Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
  21. Lim, C.W., Li, C. and Yu, J.L. (2009), "The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams", Interact. Multiscale Mech., 2(3), 223-233. https://doi.org/10.12989/imm.2009.2.3.223
  22. Poncharal P., Wang, Z., Ugarte, D. and deHeer, W.A. (1999), "Electrostatic deflections and electromechanical resonance of carbon nanotubes", Science, 283, 1513-1516. https://doi.org/10.1126/science.283.5407.1513
  23. Shenoy, V.B. (2005), "Atomistic calculations of elastic properties of metallic fcc crystal surfaces", Phys. Rev. B., 71(9), 094104. https://doi.org/10.1103/PhysRevB.71.094104
  24. Simmons, G. and Huang, G.L. (1971), Single crystal elastic constants and calculated aggregate properties : a handbook, MIT Press, Cambridge, MA.
  25. Streitz, F.H., Cammarata, R.C. and Sieradzki, K. (1994), "Surface-stress effects on elastic properties. I. Thin metal films", Phys. Rev. B., 49(15), 10699-10706. https://doi.org/10.1103/PhysRevB.49.10699
  26. Streitz, F.H., Sieradzki, K. and Cammarata, R.C. (1990), "Elastic properties of thin fcc films", Phys. Rev. B., 41(17), 12285-2287. https://doi.org/10.1103/PhysRevB.41.12285
  27. Wong, E., Sheehan, P.E. and Liever, C.M. (1997), "Nanobeam mechanics : elasticity, strength, and toughness of nanorods and nanotubes", Science, 277, 1971-1975. https://doi.org/10.1126/science.277.5334.1971

피인용 문헌

  1. Sequential multiscale analysis on size-dependent mechanical behavior of micro/nano-sized honeycomb structures vol.57, 2013, https://doi.org/10.1016/j.mechmat.2012.10.009
  2. Energy and force transition between atoms and continuum in quasicontinuum method vol.7, pp.1, 2014, https://doi.org/10.12989/imm.2014.7.1.543
  3. Stochastic homogenization of nano-thickness thin films including patterned holes using structural perturbation method vol.49, 2017, https://doi.org/10.1016/j.probengmech.2017.08.001
  4. Pore-scale numerical study of flow and conduction heat transfer in fibrous porous media vol.33, pp.5, 2011, https://doi.org/10.1007/s12206-018-1231-4