DOI QR코드

DOI QR Code

깊이 우선과 너비 우선 탐색 기법의 결합과 트리 분할을 이용한 다중 입출력 신호를 위한 새로운 최우도 복호 기법

A Novel Decoding Scheme for MIMO Signals Using Combined Depth- and Breadth-First Search and Tree Partitioning

  • 이명수 (성균관대학교 정보통신공학부) ;
  • 이영포 (성균관대학교 정보통신공학부) ;
  • 송익호 (한국과학기술원 전기및전자공학과) ;
  • 윤석호 (성균관대학교 정보통신공학부)
  • 투고 : 2010.11.02
  • 심사 : 2010.12.21
  • 발행 : 2011.01.31

초록

본 논문에서는 다중 입출력 (multiple-input multiple-output: MIMO) 시스템을 위한 깊이 우선 탐색과 (depth-first search) 너비 우선 탐색의 (breadth-first search) 혼용을 바탕으로 한 복호 기법을 제안한다. 제안된 기법은 먼저 탐색 트리를 여러 단계로 나눈 뒤, 깊이 우선 탐색과 너비 우선 탐색 기법 모두의 장점을 이끌어 낼 수 있도록 두 기법의 유기적인 적용을 통하여 각 단계를 탐색한다. 또한, 성능 평가를 통해 두 탐색 기법이 적절히 적용되었을 때, 기존의 복호 기법들보다 상당히 낮은 연산 복잡도를 갖는 것을 확인할 수 있다.

In this paper, we propose a novel ML decoding scheme based on the combination of depth- and breadth-first search methods on a partitioned tree for multiple input multiple output systems. The proposed scheme first partitions the searching tree into several stages, each of which is then searched by a depth- or breadth-first search method, possibly exploiting the advantages of both the depth- and breadth-first search methods in an organized way. Numerical results indicate that, when the depth- and breadth-first search algorithms are adopted appropriately, the proposed scheme exhibits substantially lower computational complexity than conventional ML decoders while maintaining the ML bit error performance.

키워드

참고문헌

  1. G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, "Detection algorithm and initial laboratory results using the V-BLAST space-time communication architecture," Electron. Lett., Vol.35, No.1, pp.14-16, Jan. 1999. https://doi.org/10.1049/el:19990058
  2. I. E. Telater, "Capacity of multi-antenna Gaussian channels," European Trans. Telecommun., Vol.10, pp.585-596, Nov./Dec. 1999. https://doi.org/10.1002/ett.4460100604
  3. H. Artes, D. Seethaler, and F. Hlawatsch, "Efficient detection algorithms for MIMO channels: a geometrical approach to approximate ML detection," IEEE Trans. Sig. Process., Vol.51, No.11, pp.2808-2820, Nov. 2003. https://doi.org/10.1109/TSP.2003.818210
  4. W. Zhao and G. B. Giannakis, "Reduced complexity closest point decoding algorithms for random lattices," IEEE Trans. Wireless Commun., Vol.5, No.1, pp.101-111, Jan. 2006. https://doi.org/10.1109/TWC.2006.1576534
  5. T. H. Khine, K. Fukawa, and H. Suzuki, "Suboptimal algorithm of MLD using gradient signal search in direction of noise enhancement for MIMO channels," IEICE Trans. Commun., Vol.E90-B, No.6, pp.1424-1432, June 2007. https://doi.org/10.1093/ietcom/e90-b.6.1424
  6. J. Li, F. F. Cao, and J. Yang, "Low-complexity algorithm for near-optimum detection of V-BLAST systems," IEEE Sig. Process. Lett., Vol.14, No.9, pp.593-596, Sep. 2007. https://doi.org/10.1109/LSP.2007.896153
  7. M. O. Damen, K. Abed-Meraim, and S. Burykh, "Iterative QR detection for BLAST," Wireless Personal Commun., Vol.19, No.3, pp.179-191, Dec. 2001. https://doi.org/10.1023/A:1012514205925
  8. K. Higuchi, H. Kawai, N. Maeda, H Taoka, and M Sawahashi, "Experiments on real-Time 1-Gb/s packet transmission using MLD-based signal detection in MIMO-OFDM broadband radio access," IEEE J. Sel. Areas Commun., Vol.24, No.6, pp.1141-1153, June 2006. https://doi.org/10.1109/JSAC.2005.864026
  9. L. Babai, "On Lovasz' lattice reduction and the nearest lattice point problem," Combinatorica, Vol.6, No.1, pp.1-13, Mar. 1986. https://doi.org/10.1007/BF02579403
  10. U. Fincke and M. Pohst, "Improved methods for calculating vectors of short length in a lattice, including a complexity analysis," Math. Comp., Vol.44, No.170, pp.463-471, Apr. 1985. https://doi.org/10.1090/S0025-5718-1985-0777278-8
  11. E. Viterbo and J. Boutros, "A universal lattice code decoder for fading channels," IEEE Trans. Inform. Theory, Vol.45, No.5, pp.1639-1642, July 1999. https://doi.org/10.1109/18.771234
  12. B. Hochwald and S. ten Brink, "Achieving near capacity on a multiple antenna channel," IEEE Trans. Commun., Vol.51, No.3, pp.389-399, Mar. 2003. https://doi.org/10.1109/TCOMM.2003.809789
  13. B. Hassibi and H. Vikalo, "On the sphere-decoding algorithm I. expected complexity," IEEE Trans. Sig. Process., Vol.53, No.8, pp.2806-2818, Aug. 2005. https://doi.org/10.1109/TSP.2005.850352
  14. J. Jalden and B. Ottersten, "On the complexity of sphere decoding in digital communications," IEEE Trans. Sig. Process., Vol.53, No.4, pp.1474-1484, Apr. 2005. https://doi.org/10.1109/TSP.2005.843746
  15. H. G. Kang, I. Song, J. Oh, J. Lee, and S. Yoon, "Breadth-first signal decoder (BSIDE): a novel maximum likelihood scheme for multi-input multi-output systems", IEEE Trans. Vehicle Technol., Vol.57, No.3, pp.1576-1584, Mar. 2008. https://doi.org/10.1109/TVT.2007.909246
  16. M. O. Damen, H. E. Gamal, and G. Caire, "On maximum-likelihood detection and the search for the closest lattice point," IEEE Trans. Inform. Theory, Vol.49, No.10, pp.2389-2402, Oct. 2003. https://doi.org/10.1109/TIT.2003.817444
  17. G. Valiente, Algorithms on Trees and Graphs, Springer, 2002.
  18. Z. Guo and P. Nilsson, "Algorithm and implementation of the K-best sphere decoding for MIMO detection," IEEE J. Sel. Areas Commun., Vol.24, No.3, pp.491-503, Mar. 2006. https://doi.org/10.1109/JSAC.2005.862402
  19. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, 1996.