DOI QR코드

DOI QR Code

A Novel Decoding Scheme for MIMO Signals Using Combined Depth- and Breadth-First Search and Tree Partitioning

깊이 우선과 너비 우선 탐색 기법의 결합과 트리 분할을 이용한 다중 입출력 신호를 위한 새로운 최우도 복호 기법

  • 이명수 (성균관대학교 정보통신공학부) ;
  • 이영포 (성균관대학교 정보통신공학부) ;
  • 송익호 (한국과학기술원 전기및전자공학과) ;
  • 윤석호 (성균관대학교 정보통신공학부)
  • Received : 2010.11.02
  • Accepted : 2010.12.21
  • Published : 2011.01.31

Abstract

In this paper, we propose a novel ML decoding scheme based on the combination of depth- and breadth-first search methods on a partitioned tree for multiple input multiple output systems. The proposed scheme first partitions the searching tree into several stages, each of which is then searched by a depth- or breadth-first search method, possibly exploiting the advantages of both the depth- and breadth-first search methods in an organized way. Numerical results indicate that, when the depth- and breadth-first search algorithms are adopted appropriately, the proposed scheme exhibits substantially lower computational complexity than conventional ML decoders while maintaining the ML bit error performance.

본 논문에서는 다중 입출력 (multiple-input multiple-output: MIMO) 시스템을 위한 깊이 우선 탐색과 (depth-first search) 너비 우선 탐색의 (breadth-first search) 혼용을 바탕으로 한 복호 기법을 제안한다. 제안된 기법은 먼저 탐색 트리를 여러 단계로 나눈 뒤, 깊이 우선 탐색과 너비 우선 탐색 기법 모두의 장점을 이끌어 낼 수 있도록 두 기법의 유기적인 적용을 통하여 각 단계를 탐색한다. 또한, 성능 평가를 통해 두 탐색 기법이 적절히 적용되었을 때, 기존의 복호 기법들보다 상당히 낮은 연산 복잡도를 갖는 것을 확인할 수 있다.

Keywords

References

  1. G. D. Golden, G. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, "Detection algorithm and initial laboratory results using the V-BLAST space-time communication architecture," Electron. Lett., Vol.35, No.1, pp.14-16, Jan. 1999. https://doi.org/10.1049/el:19990058
  2. I. E. Telater, "Capacity of multi-antenna Gaussian channels," European Trans. Telecommun., Vol.10, pp.585-596, Nov./Dec. 1999. https://doi.org/10.1002/ett.4460100604
  3. H. Artes, D. Seethaler, and F. Hlawatsch, "Efficient detection algorithms for MIMO channels: a geometrical approach to approximate ML detection," IEEE Trans. Sig. Process., Vol.51, No.11, pp.2808-2820, Nov. 2003. https://doi.org/10.1109/TSP.2003.818210
  4. W. Zhao and G. B. Giannakis, "Reduced complexity closest point decoding algorithms for random lattices," IEEE Trans. Wireless Commun., Vol.5, No.1, pp.101-111, Jan. 2006. https://doi.org/10.1109/TWC.2006.1576534
  5. T. H. Khine, K. Fukawa, and H. Suzuki, "Suboptimal algorithm of MLD using gradient signal search in direction of noise enhancement for MIMO channels," IEICE Trans. Commun., Vol.E90-B, No.6, pp.1424-1432, June 2007. https://doi.org/10.1093/ietcom/e90-b.6.1424
  6. J. Li, F. F. Cao, and J. Yang, "Low-complexity algorithm for near-optimum detection of V-BLAST systems," IEEE Sig. Process. Lett., Vol.14, No.9, pp.593-596, Sep. 2007. https://doi.org/10.1109/LSP.2007.896153
  7. M. O. Damen, K. Abed-Meraim, and S. Burykh, "Iterative QR detection for BLAST," Wireless Personal Commun., Vol.19, No.3, pp.179-191, Dec. 2001. https://doi.org/10.1023/A:1012514205925
  8. K. Higuchi, H. Kawai, N. Maeda, H Taoka, and M Sawahashi, "Experiments on real-Time 1-Gb/s packet transmission using MLD-based signal detection in MIMO-OFDM broadband radio access," IEEE J. Sel. Areas Commun., Vol.24, No.6, pp.1141-1153, June 2006. https://doi.org/10.1109/JSAC.2005.864026
  9. L. Babai, "On Lovasz' lattice reduction and the nearest lattice point problem," Combinatorica, Vol.6, No.1, pp.1-13, Mar. 1986. https://doi.org/10.1007/BF02579403
  10. U. Fincke and M. Pohst, "Improved methods for calculating vectors of short length in a lattice, including a complexity analysis," Math. Comp., Vol.44, No.170, pp.463-471, Apr. 1985. https://doi.org/10.1090/S0025-5718-1985-0777278-8
  11. E. Viterbo and J. Boutros, "A universal lattice code decoder for fading channels," IEEE Trans. Inform. Theory, Vol.45, No.5, pp.1639-1642, July 1999. https://doi.org/10.1109/18.771234
  12. B. Hochwald and S. ten Brink, "Achieving near capacity on a multiple antenna channel," IEEE Trans. Commun., Vol.51, No.3, pp.389-399, Mar. 2003. https://doi.org/10.1109/TCOMM.2003.809789
  13. B. Hassibi and H. Vikalo, "On the sphere-decoding algorithm I. expected complexity," IEEE Trans. Sig. Process., Vol.53, No.8, pp.2806-2818, Aug. 2005. https://doi.org/10.1109/TSP.2005.850352
  14. J. Jalden and B. Ottersten, "On the complexity of sphere decoding in digital communications," IEEE Trans. Sig. Process., Vol.53, No.4, pp.1474-1484, Apr. 2005. https://doi.org/10.1109/TSP.2005.843746
  15. H. G. Kang, I. Song, J. Oh, J. Lee, and S. Yoon, "Breadth-first signal decoder (BSIDE): a novel maximum likelihood scheme for multi-input multi-output systems", IEEE Trans. Vehicle Technol., Vol.57, No.3, pp.1576-1584, Mar. 2008. https://doi.org/10.1109/TVT.2007.909246
  16. M. O. Damen, H. E. Gamal, and G. Caire, "On maximum-likelihood detection and the search for the closest lattice point," IEEE Trans. Inform. Theory, Vol.49, No.10, pp.2389-2402, Oct. 2003. https://doi.org/10.1109/TIT.2003.817444
  17. G. Valiente, Algorithms on Trees and Graphs, Springer, 2002.
  18. Z. Guo and P. Nilsson, "Algorithm and implementation of the K-best sphere decoding for MIMO detection," IEEE J. Sel. Areas Commun., Vol.24, No.3, pp.491-503, Mar. 2006. https://doi.org/10.1109/JSAC.2005.862402
  19. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, 1996.