DOI QR코드

DOI QR Code

A Performance Bound of Mu1ti-hop Mu1ti-Relay Wireless Communication Systems with Optimal Path Selection

다중-홉 다중-릴레이 무선 통신 시스템에서 최적 경로 선택 기법의 성능 한계

  • Received : 2010.10.04
  • Accepted : 2010.12.13
  • Published : 2011.01.31

Abstract

Recently, multi-hop relay transmission has drawn much attention owing to its advantage of coverage extension at low power consumption. In this paper, we derive a performance bound of multi-hop communication systems with multiple amplify-and-forward relays when the optimal path is selected. The bound is derived in generalized Nakagami fading channels with different parameters for each hop by applying the geometric mean bound to the path signal-to-noise ratio (SNR) and obtaining the moment generation function of the bound. It is shown that the bound based on the geometric mean is closer to the actual performance of optimal path selection when the fading effect is small.

최근 다중-홉 릴레이 전송 방식은 전력 소모를 줄이면서 통신 가능 영역을 넓힐 수 있는 장점으로 큰 관심을 받고 있다. 본 논문에서는 홉마다 증폭-후-전달 릴레이가 다수 존재하는 다중 홉 통신시스템에서 최적 경로를 선택할 때 얻을 수 있는 성능 한계를 유도한다. 특히, 홉마다 분포가 다른 일반화된 나카가미 페이딩 채널에서의 성능 한계를 제공하도록 경로를 구성하는 링크 신호대잡음비의 기하 평균 상한을 적용하고 그에 대한 적률생성함수를 얻었다. 그 결과 페이딩 특성이 적을수록 제안한 기하 평균 상한 기법이 실제 성능에 더욱 근접함을 볼 수 있다.

Keywords

References

  1. M.O. Hasna and M.-S. Alouini, "Outage probability of multihop transmission over Nakagami fading channels," IEEE Commun. Lett., Vol.7, No.5, pp.216-218, May 2003. https://doi.org/10.1109/LCOMM.2003.812178
  2. J.N. Laneman and G.W. Wornell, "Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks," IEEE Trans. Inform. Theory, Vol.49, No.10, pp.2415-2425, Oct. 2003. https://doi.org/10.1109/TIT.2003.817829
  3. J.N. Laneman, D. N. C. Tse, and G.W. Wornell, "Cooperative diversity in wireless networks: efficient protocols and outage behavior," IEEE Trans. Inform. Theory, Vol.50, No.12, pp.3062-3080, Dec. 2004. https://doi.org/10.1109/TIT.2004.838089
  4. L. Yang, M. O. Hasna, and M.-S. Alouini, "Average outage duration of multihop communication systems with regenerative relays," IEEE Trans. Wireless Commun., Vol.4, No.4, pp.1366-1371, July 2005. https://doi.org/10.1109/TWC.2005.852138
  5. G.K. Karagiannidis, T.A. Tsiftsis, and R.K. Mallik, "Bounds for multihop relayed communications in Nakagami-m Fading," IEEE Trans. Commun., Vol.54, No.1, pp.18-22, Jan. 2006. https://doi.org/10.1109/TCOMM.2005.861679
  6. G. K. Karagiannidis, "Performance bounds of multihop wireless communications with blind relays over generalized fading channels," IEEE Trans. Wireless Commun., Vol.5, No.3, pp.498-503, Mar. 2006. https://doi.org/10.1109/TWC.2006.1611077
  7. A. Beltsas, A. Khisti, D.P. Reed, and A. Lippman, "A simple cooperative diversity method based on network path selection," IEEE J. Select. Areas Commun., Vol.24, No.3, pp.659-672, Mar. 2006. https://doi.org/10.1109/JSAC.2005.862417
  8. D.S. Michalopoulos and G.K. Karagiannidis, "Performance analysis of single relay selection in Rayleigh fading," IEEE Trans. Wireless Commun., Vol.7, No.10, pp.3718-3724, Oct.2008. https://doi.org/10.1109/T-WC.2008.070492
  9. B.Gui, L. Dai, and A. Cimini, "Routing strategies in multihop cooperative networks," IEEE Trans. Commun., Vol.8, No.2, Feb. 2009.
  10. M.K. Simon and M.S. Alouini, Digital Communication over Fading Channels, 2nd Ed. New York: Wiley, 2005.
  11. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 6th Ed., Academic, NY, 2000.
  12. G.A. Baker and P. Graves-Morris, Pade Approximants, Cambridge Univ. Press, Cambridge, UK, 1996.
  13. G.K. Karagiannidis, "Moments-based approach to the performance analysis of equal-gain diversity in Nakagami-m fading," IEEE Trans. Commun., Vol.52, No.5, pp.685-690, May 2004. https://doi.org/10.1109/TCOMM.2004.826255