초록
랜덤 발생 심볼과 출력 신호에 대해 두 확률 밀도 함수 사이의 유클리드 거리를 최소화하는 복소 채널 등화 알고리듬은 정보 이론적 학습방법의 장점을 살리면서 위상 회전 문제까지 극복할 수 있도록 설계 되었다. 이 논문에서는 이 알고리듬에 대해 확률 밀도 함수 구축에 사용된 커널 사이즈가 성능에 끼치는 영향을 연구하였고 커널 사이즈의 변형에 인한 정보 포텐셜 간의 힘 조절에 변화를 준 Kernel-modified 알고리듬을 제안하였다. 이 제안한 방식은 커널 사이즈 변형이 이루어지지 않은 알고리듬에 대해 약 4 dB 정도의 성능 향상을 만들어 냈다. 성상도 특성에서도 복소 채널에 의한 위상 회전이 완벽하게 극복될 뿐 아니라 보다 집중된 심볼 점을 보였다.
The complex-valued blind algorithm based on a set of randomly generated symbols and Euclidean distance can take advantage of information theoretic learning and cope with the channel phase rotation problems. On the algorithm, in this paper, the effect of kernel size has been studied and a kernel-modified version of the algorithm that rearranges the forces between the information potentials by kernel-modification has been proposed. In simulation results for 16 QAM and complex-channel models, the proposed algorithm show significantly enhanced performance of symbol-point concentration and no phase rotation problems caused by the complex channel models.