Development of Biorefinery Process using Microalgae

미세조류를 이용한 바이오리파이너리 공정의 개발

  • 신현재 (조선대학교 생명화학공학과) ;
  • 박주현 (조선대학교 해양생명과학과) ;
  • 정원교 (조선대학교 해양생명과학과) ;
  • 조훈 (조선대학교 응용화학소재공학과) ;
  • 김시욱 (조선대학교 환경공학과)
  • Received : 2010.12.17
  • Accepted : 2011.12.30
  • Published : 2011.02.01

Abstract

Recently, microalgae have been focused on potential biomass for bio-diesel and biorefinery process. The aim of this paper is to review the biorefinery process including biodesel using microalgae as a microreactor. The state-of-the-art of biodiesel and biorefinery research such as extraction and reaction process as well as byproducts utilization is described. In addition, we suggest possibility for develop bioactive substances and their industrial products from byproducts of microalgae massively obtained after bio-diesel extraction.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원

References

  1. Koh, L. P. and Ghazoul, J., "Biofuels, Biodiversity, and People: Understanding the Conflicts and Finding Opportunities," Biological Conversation, Vol. 141, No. 10, pp. 2450-2460, 2008.
  2. Dismukes, G. C., Carrieri, D., Bennette, N., Ananyey, G. M. and Posewitz, M. C., "Aquatic Phototrophs: Efficient Alternatives to Land-based Crops for Biofuels," Current Opinion in Biotechnology, Vol. 19, No. 3, pp. 235-240, 2008. https://doi.org/10.1016/j.copbio.2008.05.007
  3. Richmond, A., "Handbook of Microalgal Culture: Biotechnology and Applied Phycology," Blackwell Science Ltd., 2004.
  4. Chapman, L. R. and Waters, D. A., "Life as We Know It. Series: Cellular Origin, Life in Extreme Habitats and Astrobiology," Springer, Vol. 10, pp. 37-51, 2006.
  5. Rosenberg, J. N., Oyler, G. A., Wilkinson, L. and Betenbaugh, M. J., "A Green Light for Engineered Algae: Redirecting Metabolism to Fuel a Biotechnology Revolution," Current Opinion in Biotechnology, Vol. 19, No. 5, pp. 430-436, 2008. https://doi.org/10.1016/j.copbio.2008.07.008
  6. Nakamura, D., "Journally Speaking: the Mass Appeal of Biomass," Oil and Gas Journal, Vol. 104, No. 45, pp. 15-16, 2006.
  7. Demirbas, A., "Oily Products from Mosses and Algae via Pyrolysis," Energy Sources Part A, Vol. 28, No. 10, pp. 933-940, 2006. https://doi.org/10.1080/009083190910389
  8. Li, Y., Horsman, M., Wu, N., Lan, Q. and Duois- Calero, N., "Biocatalyst and Bioreactor Design," Biotechnology Progress, Vol. 24, No. 3, pp. 815-820, 2008.
  9. Hoshaw, R. W. and Rosowski, J. R., "Methods for Microscopic Algae: in Stein, J. R. (Ed.), Handbook of Phycological Methods," Cambridge Univ. Press, pp. 53-68, 1973.
  10. Kim, J.-S., Park, Y.-H., Yoon, B.-D. and Oh, H.-M., "Establishment of Axenic Cultures of Anabaena flosaquae and Aphanothece nidulans (Cyanophyta) by Iysozyme Treatment," J. Phycol., Vol. 35, No. 4, pp. 865-869, 1999. https://doi.org/10.1046/j.1529-8817.1999.3540865.x
  11. Chisti, Y., "Biodiesel from Microalgae," Biotechnology Advances, Vol. 25, No. 3, pp. 294-306, 2007. https://doi.org/10.1016/j.biotechadv.2007.02.001
  12. Costa, J. A. V., Colla, L. M.,, Filho, P. D., Kabke, K. and Weber, A., "Modelling of Spirulina platensis Growth in Fresh Water Using Response Surface Methodology," Journal of Microbiology & Biotechnology, Vol. 18, No. 7, pp. 603-607, 2002. https://doi.org/10.1023/A:1016822717583
  13. Spolaore, P., Cassan, C. J., Duran, E. and Isambert, A., "Optimization of Nannochloropsis oculata Growth using the Response Surface Method," Journal of Chemical Technology & Biotechnology, Vol. 81, No. 6, pp. 1049-1056, 2006. https://doi.org/10.1002/jctb.1529
  14. Bilanovic, D., Andargatchew, A., Kroeger, T. and Shelef, G., "Freshwater and Marine Microalgae Sequestering of $CO_2$ at Different C and N Concentrations-Response Surface Methodology Analysis," Energy Conversion and Management, Vol. 50, No. 2, pp. 262-267, 2009. https://doi.org/10.1016/j.enconman.2008.09.024
  15. Lee, I. K., "Algae in Korea: Physiology and Application," Academy Publishing, pp. 267-285, 2001.
  16. Lee, S.-J., Kim, S.-B., Kim, J.-E., Kwon, G.-S., Yoon, B.-D. and Oh, H.-M., "Effects of Harvesting Method and Growth Stage on the Flocculation of the Green Alga Botryococcus braunii," Lett. Appl. Microbiol. Vol. 27, No. 1, pp. 14-18, 1998. https://doi.org/10.1046/j.1472-765X.1998.00375.x
  17. Guelcher, S. A. and Kanel, J. S., "Method for Dewatering Microalgae with a Bubble Column," U.S., Patent, No. 5910254, 1999.
  18. Kanel, J. S. and Guelcher, S. A., "Adsorptive Bubble Separation Methods and Systems for Dewatering Suspensions of Microalgae and Extracting Components Therefrom," U.S. Patent, No. 5951875, 1999.
  19. Samori, C., Torri, C., Samori, G., Fabbri, D., Galletti, P., Guerrini, F., Pistocchi, R. and Tagliavini, E., "Extraction of Hydrocarbons from Microalga Botryococcus braunii, with Switchable Solvents," Bioresource Technology, Vol. 101, No. 9, pp. 3274-3279, 2010. https://doi.org/10.1016/j.biortech.2009.12.068
  20. Demirbas, A. and Demirbas, M. F., "Importance of Algae Oil As a Source of Biodiesel," Energy Conversion and Management, Vol. 52, No. 1, pp. 163-170, 2011. https://doi.org/10.1016/j.enconman.2010.06.055
  21. Hattab, M. E., Culioli, G., Piovetti, L., Chitour, S. E. and Valls, R., "Comparison of Various Extraction Methods for Identification and Determination of Volatile Metabolites from the Brown Alga Dictyopteris membranacea," Journal of Chromatography A, Vol. 1143, No. 1-2, pp. 1-7, 2007. https://doi.org/10.1016/j.chroma.2006.12.057
  22. Halim, R., Gladman, B., Danquah, M. K. and Webley, P. A., "Oil Extraction from Microalgae for Biodiesel Production," Bioresource Technology, Vol. 102, No. 1, pp. 178-185, 2011. https://doi.org/10.1016/j.biortech.2010.06.136
  23. Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y. and Oh, H. M., "Comparison of Several Methods for Effective Lipid Extraction from Microalgae," Bioresource Technology, Vol. 101, Suppl. 1, No. 1, pp. S75-S77, 2010. https://doi.org/10.1016/j.biortech.2009.03.058
  24. Pan, X., Niu, G. and Liu, H., "Comparison of Microwave Assisted Extraction and Conventional Extraction Techniques for the Extraction of Tanshinones from Salvia miltiorrhiza Bunge," Biochemical Engineering Journal, Vol. 12, No. 1, pp. 71-77, 2002. https://doi.org/10.1016/S1369-703X(02)00039-6
  25. Terigar, B. G., Balasubramanian, S., Boldor, D., Xu, Z., Lima, M. and Sabliov, C. M., "Continuous Microwave-Assisted Isoflavone Extraction System: Design and Performance Evaluation," Bioresource Technology, Vol. 101, No. 7, pp. 2466-2471, 2010. https://doi.org/10.1016/j.biortech.2009.11.039
  26. Choi, I., Choi, S. J., Chun, J. K. and Moon, T. W., "Extraction Yield of Soluble Protein and Microstructure of Soybean Affected by Microwave Heating," Journal of Food Processing and Preservation, Vol. 30, No. 4, pp. 407-419, 2006. https://doi.org/10.1111/j.1745-4549.2006.00075.x
  27. Zecchina, A., Groppo, E. and Bordiga, S., "Selective Catalysis and Nanoscience. An Inseparable Pair," Chemistry, Vo. 13, No. 9, pp. 2440-2460, 2007. https://doi.org/10.1002/chem.200600678
  28. Tran, N. H., Bartlett, J. R., Kannangara, G. S. K., Milev, A. S., Volk, H. and Wilson, M. A., "Catalytic Upgrading of Biorefinery Oil from Micro-Algae," Fuel, Vol. 89, No. 2, pp. 265-274, 2010. https://doi.org/10.1016/j.fuel.2009.08.015
  29. Miao, X. and Wu, Q., "High Yield Bio-Oil Production from Fast Pyrolysis by Metabolic Controlling of Chlorella protothecoides," J. Biotechnol., Vol. 110, No. 1, pp. 85-93, 2004. https://doi.org/10.1016/j.jbiotec.2004.01.013
  30. Bridgwater, A. V. and Peacocke, G. V. C., "Fast Pyrolysis Processes for Biomass," Renew. Sust. Energy Rev., Vol. 4, No. 1, pp. 1-73, 2000. https://doi.org/10.1016/S1364-0321(99)00007-6
  31. Minowa, T., Yokoyama, S., Kishimoto, M. and Okakurat, T., "Oil Production from Algal Cells of Dunaliella tertiolecta by Direct Thermochemical Liquefaction," Fuel, Vol. 74, No. 12, pp. 1735-1738, 1995. https://doi.org/10.1016/0016-2361(95)80001-X
  32. Amin, S., "Review on Biofuel Oil and Gas Production Processes from Microalgae," Energy Conversion and Management, Vol. 50, No. 7, pp. 1834-1840, 2009. https://doi.org/10.1016/j.enconman.2009.03.001
  33. FAO, Oil production, FAO Corp Doc Repository, www.fao.org/docrep/w7241e/w7241e0h.htm.
  34. Satin, M., Microalgae, http://www.fao.org/ag/ags/Agsi/MICROALG.htm.
  35. Gutthann, F., Egert, M., Marques, A. and Appel, J., "Inhibition of Respiration and Nitrate Assimilation Enhances Photohydrogen Evolution under Low Oxygen Concentrations in Synechocystis sp. PCC 6803," Biochimica et Biophysica. Acta, Vol. 1767, No. 2, pp. 161-169, 2007. https://doi.org/10.1016/j.bbabio.2006.12.003
  36. Jo, B. H. and Cha, H. J., "Biodiesel Production Using Microalgal Marine Biomass," KSBB Journal, Vol. 25, No. 2, pp. 109-115, 2010.
  37. Greenwell, H. C., Laurens, L. M. L., Shields, R. J., Lovitt, R. W. and Flynn, K. J., "Placing Microalgae on the Biofuels Priority List: A Review of the Technological Challenge," Journal of Royal Society, Vol. 7, No. 46, pp. 703-726, 2010.
  38. Jang, E. S., Jung, M. Y. and Min, D. B., "Hydrogenation for Low Trans and High Conjugated Fatty Acids," Comprehensive Reviews in Food Science and Food Safety, Vol. 4, No. 1, pp. 22-30, 2005. https://doi.org/10.1111/j.1541-4337.2005.tb00069.x
  39. Dijkstra, A. J., "Revisiting the Formation of Trans Isomers During Partial Hydrogenation of Triacylglycerol Oils," European Journal of Lipid Science and Technology, Vol. 108, No. 3, pp. 249-264. 2006. https://doi.org/10.1002/ejlt.200500335
  40. Roessler, P. G., Bleibaum, J. L., Thompson, G. A. and Ohlrogge, J. B., "Characteristics of the Gene that Encodes Acetyl-CoA Carboxylase in the Diatom Cyclotella cryptica," Annals of the New York Academy of Sciences, Vol. 721, pp. 250-256, 1994. https://doi.org/10.1111/j.1749-6632.1994.tb47398.x
  41. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. and Hankamer, B., "Second Generation Biofuels: High Efficiency Microalgae for Biodiesel Production," Bioenergy Research, Vol. 1, No. 1, pp. 20-43, 2008. https://doi.org/10.1007/s12155-008-9008-8
  42. Demirbas, A., "Oily Products from Mosses and Algae via Pyrolysis," Energy Sources Part A, Vol. 28, No. 10, pp. 933-940, 2006. https://doi.org/10.1080/009083190910389
  43. Miao, X. and Wu, Q., "High Yield Bio-Oil Production from Fast Pyrolysis by Metabolic Controlling of Chlorella protothecoides," Journal of Biotechnology, Vol. 110, No. 1, pp. 85-93, 2004. https://doi.org/10.1016/j.jbiotec.2004.01.013
  44. Yang, Y. M., Kim, K. J. and Lee, Y., "Glycerol Separation from Biodiesel Byproduct," J. Korean Ind. Eng. Chem., Vol. 19, No. 6, pp. 690-692, 2008.
  45. Jeon, S. M., Kim, I. H., Ha, J. M. and Lee, J. H., "Overview of Technology for Fixation of Carbon Dioxide Using Microalgae," J. Korean Ind. Eng. Chem., Vol. 19, No. 2, pp. 145-150, 2008.
  46. Goh, S. H., Yusoff. F. M. and Loh. S. P., "A Comparison of the Antioxidant Properties and Total Phenolic Content in a Diatom, Chaetoceros sp. and a Green Microalga, Nannochloropsis sp.," Journal of Agricultural Science, Vol. 2, No. 3, pp. 123-130, 2010.
  47. Guzman, S., Gato, A., Lamela, M., Freire-Garabal, M. and Calleja, J. M., "Anti-Inflammatory and Immunomodulatory Activities of Polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum," Phytotherapy Research, Vol. 17, No. 6, pp. 665-670, 2003. https://doi.org/10.1002/ptr.1227
  48. Wang, H. M., Pan, J. L., Chen, C. Y., Chiu, C. C., Yang, M. H., Chang, H. W. and Chang, J. S., "Identification of Anti-Lung Cancer Extract from Chlorella vulgaris C-C by Antioxidant Property Using Supercritical Carbon Dioxide Extraction," Process Biochemistry, Vol. 45, No. 12, pp. 1865-1872, 2010. https://doi.org/10.1016/j.procbio.2010.05.023
  49. Cherng, J. Y. and Shih, M. F., "Potential Hypoglycemic Effects of Chlorella in Streptozotocin- Induced Diabetic Mice," Life Sciences, Vol. 77, No. 9, pp. 980-990, 2005. https://doi.org/10.1016/j.lfs.2004.12.036
  50. Rao, A., Sarada, R., Baskaran, V. and Ravishankar, G. A., "Antioxidant Activity of Botryococcus braunii Extract Elucidated In Vitro Models," J. Agric. Food Chem., Vol. 54, No. 13, pp. 4593-4599, 2006. https://doi.org/10.1021/jf060799j
  51. Sheu, M. J., Huang, G. J., Wu, C., Chen, J. S., Chang, H. Y., Chang, S. J. and Chung, J. G., "Ethanol Extract of Dunaliella salina Induces Cell Cycle Arrest and Apoptosis in A549 Human Non-Small Cell Lung Cancer Cells," In Vivo, Vol. 22, No. 3, pp. 369-378, 2008.
  52. Hsu, Y. W., Tsai, C. F., Chang, W. H., Ho, Y. C., Chen, W. K. and Lu, F. J., "Protective Effects of Dunaliella salina - A Carotenoids-Rich Alga, Against Carbon Tetrachloride-Induced Hepatotoxicity in Mice," Food and Chemical Toxicology, Vol. 46, No. 10, pp. 3311-3317, 2008. https://doi.org/10.1016/j.fct.2008.07.027
  53. Murthy, K. N. C., Rajesha, A. V. J., Swamy, M. M., Sowmya, P. R. and Ravishankar, G. A., "In Vivo Antioxidant Activity of Carotenoids from Dunaliella salina - A Green Microalga," Life Sciences, Vol. 76, No. 12, pp. 1381-1390, 2005. https://doi.org/10.1016/j.lfs.2004.10.015
  54. Chou, P. Y., Huang, G. J., Cheng, H. C., Wu, C. H., Chien, Y. C., Chen, J. S., Huang, M. H., Hsu, K. J. and Sheu, M. J., "Analgesic and Anti-Inflammatory Activities of an Ethanol Extract of Dunaliella salina TEOD," Journal of Food Biochemistry, Vol. 34, No. 6, pp. 1288-1302, 2010. https://doi.org/10.1111/j.1745-4514.2010.00389.x
  55. Natrah, F. M. I., Yusoff, F. M., Shariff, M., Abas, F. and Mariana, N. S., "Screening of Malaysian Indigenous Microalgae for Antioxidant Properties and Nutritional Value," J. Appl. Phycol., Vol. 19, No. 6, pp. 711-718, 2007. https://doi.org/10.1007/s10811-007-9192-5