Recent Trends of the Development of Photobioreactors to Cultivate Microalgae

미세조류 배양을 위한 광생물반응기 개발의 기술동향

  • 김종태 (조선대학교 바이오리파이너리연구센터) ;
  • 안동규 (조선대학교 기계공학과) ;
  • 박종락 (조선대학교 광기술공학과) ;
  • 박정우 (조선대학교 기계설계공학과) ;
  • 정상화 (조선대학교 기계공학과)
  • Received : 2010.12.16
  • Accepted : 2010.12.21
  • Published : 2011.02.01

Abstract

This paper describes current status and future prospects of the mass production of microalgae biomass. Microalgae have attracted considerable attention since they not only effectively fix $CO_2$ gas during their metabolic process but also have the great potential to be utilized for producing valuable substances as a kind of efficient light-harvesting cell factories. In this review, we outline various types of photobioreactors employed for mass production of biomass by culturing microalgae in a well controlled way and give an overview about the present state of affairs, both domestic and international, in the field of the microalgal culturing technologies.

Keywords

References

  1. Sebastian, O. and Hermann, E. O., "The Kyoto Prtocal : International Climate Policy for the 21st Century," Springer-Verlag, pp. 1-136, 1999.
  2. Pimentel, D. and Patzek, T. W., "Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower," Natural Resources Research, Vol. 14, No. 1, pp. 65-76, 2005. https://doi.org/10.1007/s11053-005-4679-8
  3. Kurano, N., Ikemoto, H., Miyashita, H., Hasegawa, T., Hata, H. and Miyachi, S., "Fixation and Utilization of Carbon Dioxide by Microalgal Photosynthesis," Energy Convers. Mgmt., Vol. 36, No. 6-9, pp. 689-692. 1995. https://doi.org/10.1016/0196-8904(95)00099-Y
  4. Sung, K. D., Lee, J. S., Shin, C. S., Park, S. C. and Choi, M. J., "CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics," Biosource Technology, Vol. 68, No. 3, pp. 269-273, 1999. https://doi.org/10.1016/S0960-8524(98)00152-7
  5. Goldman, J. C., "Outdoor algal mass cultures -II. Photosynthetic yield Limitations," Water Research, Vol. 13, No. 2, pp. 119-136, 1979. https://doi.org/10.1016/0043-1354(79)90083-6
  6. Pulz, O., "Photobioreactors : production systems for phototrophic microorganisms," Appl. Micrbiol. Biotechnol., Vol. 57, No. 3, pp. 287-293, 2001. https://doi.org/10.1007/s002530100702
  7. Oh, H. M., Choi, A. and Mheen, T. I., "High-Value Materials from Microalgae," Kor. J. Microbiol. Biotechnol., Vol. 31, No. 2, pp. 95-102, 2003.
  8. Oh, H. M., "Development of Photosynthetic Microorganism for the Production of Higher-value Carotenoid Using Carbon Dioxide," Ministry of Eduction, Science & Technology, Carbon Dioxide Reduction & Sequestration R&D Program, 2008.
  9. Liu, Z. Y., Wang, G. G. and Zhou, B. C., "Effect of iron on growth and lipid accumulation in Chlorella vulgaris," Bioresource Technology, Vol. 99, No. 11, pp. 4717-4722, 2008. https://doi.org/10.1016/j.biortech.2007.09.073
  10. Jeon, S. M., Kim, I. H, Ha, J. M. and Lee, J. H., "Overview of Technology for Fixation of carbon Dioxide Using Microalgae," J. Korean Ind. Eng. Chem., Vol. 19, No. 2, pp. 145-150, 2008.
  11. Becker, E. W., "Microalgae: Biotechnology and Microbiology by E.W.Becker," Cambridge University Press, pp. 63-171, 1994.
  12. Dayananda, C., Sarada, R., Usha Rani, M., Shamala, T. R. and Ravishankar, G. A., "Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media," Biomass & Bioenergy, Vol. 31, No. 1, pp. 87-93, 2007. https://doi.org/10.1016/j.biombioe.2006.05.001
  13. Benemann, J. R., "A technology roadmap greenhouse gas abatement with microalgae," Report to the U.S. Department of Energy, National Energy Technology Laboratory, and the International Energy Agency Greenhouse Gas Abatement Program, 2003.
  14. Oswald, W. J., "Large scale algal culture systems (engineering aspects): in Borowitzka, M. A. and Borowitzka, L. J. (Eds.), Micro-algal Biotechnology," Cambridge University Press, pp. 357-410, 1988.
  15. Pushparaj, B., Pelosi, E., Tredici, M. R., Pinzani, E. and Materassi, R., "An integrated culture system for outdoor production of microalgae and cyanobacteria," J. Applied Phycology, Vol. 9, No. 2, pp. 113-119, 1997. https://doi.org/10.1023/A:1007988924153
  16. Chaumont, D., "Biotechnology of algal biomass production: a review of system for outdoor mass culture," J. Applied Phycology, Vol. 5, No. 6, pp. 593-604, 1993. https://doi.org/10.1007/BF02184638
  17. http://biofuels2010.blogspot.com/2010/11/mit-algaephotobioreactor. html
  18. Borowitzka, M. A., "Closed algal photobioreactors : design considerations for large-scale systems," Journal of Marine Biotechnology, Vol. 4, No. 4, pp. 185-191,1996.
  19. Carvalho, A. P., Meireles, L. A. and Malcata, F. X., "Microalgal Reactors: A Review of Enclosed System Designs and Performances," Biotechnol. Prog, Vol. 22, No. 6, pp. 1490-1506, 2006. https://doi.org/10.1002/bp060065r
  20. Tredici, M. R. and Materassi, R., "From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms," J. Applied Phycology, Vol. 4, No. 3, pp. 221-31, 1992. https://doi.org/10.1007/BF02161208
  21. Lee, Y. K., "Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend," Trends in Biotechnology, Vol. 4, No. 7, pp. 186-1899, 1986. https://doi.org/10.1016/0167-7799(86)90243-X
  22. Zhang, K., Miyachi, S. and Kurano, N., "Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency," Appl. Microbiol. Biotechnol., Vol. 55, No. 4, pp. 428-433, 2001. https://doi.org/10.1007/s002530000550
  23. Tredici, M. R., Carlozzi, P., Zittelli G. C. and Materassi, R., "A vertical alveolar panel(VAP) for outdoor mass cultivation of microalgae and cyanobacteria," Bioresource Technology, Vol. 38, No. 2-3, pp. 153-159, 1991. https://doi.org/10.1016/0960-8524(91)90147-C
  24. Berzin, I., "Photobioreactor and process for biomass production and mitigation of pollutants in flue gases," United States Patent Application Publication No. US2005/0260553A1, 2005.
  25. Contreras, A., Garcia, F., Molina, E. and Merchuk, J. C., "Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of phaeodactylum tricornutum in a concentric tube airlift photobioreactor," Biotechnol. Bioeng., Vol. 60, No. 3, pp. 317-325, 1998. https://doi.org/10.1002/(SICI)1097-0290(19981105)60:3<317::AID-BIT7>3.0.CO;2-K
  26. Lee, Y. K., Ding, S. Y., Low, C. S. and Chang, Y. C., "Design and performance of an ${\alpha}$-type tubular photobioreactor for mass cultivation of microalgae," J Applid Phycology, Vol. 7, No. 1, pp. 47-51, 1995. https://doi.org/10.1007/BF00003549
  27. Martnez-Jeronimo, F. and Espinosa-Chavez, F., "A laboratory-scale system for mass culture of freshwater microalgae in polyethylene bags," J. Appl. Phcol., Vol. 6, No. 4, pp. 423-425, 1994. https://doi.org/10.1007/BF02182159
  28. Tredici, M. and Rodolfi, L., "Reactor for industrial culture of photosynthetic micro-organisms," WIPO Patent Application WO 2004/074423 A2, 2004.
  29. Chalmers, J. J., "Cells and bubbles in sparged bioreactors," Cytotechnology, Vol. 15, No. 1-3, pp. 311-320, 1994. https://doi.org/10.1007/BF00762406
  30. Miyamoto, K., Wable, O. and Benemann, J. R., "Vertical tubular reactor for microalgae cultivation," Biotechnology Letters, Vol. 10, No. 10, pp. 703-708, 1988. https://doi.org/10.1007/BF01025286
  31. Miron, A. S., Camacho, F. G., Gomez, A. C., Grima, E. M. and Chisti, Y., "Bubble-column and airlift photobioreactors for algal culture," AIChE Journal, Vol. 46, No. 9, pp. 1872-1887, 2000. https://doi.org/10.1002/aic.690460915
  32. Tredic, M. R. and Zittelli, G. C., "Efficiency of Sunlight Utilization: Tubular Versus Flat Photobioreactors," Biotechnol. Bioeng., Vol. 57, No. 2, pp. 187-197, 1998. https://doi.org/10.1002/(SICI)1097-0290(19980120)57:2<187::AID-BIT7>3.0.CO;2-J
  33. Qiang, H. and Richmond, A., "Productivity and photosynthetic efficiency of spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate Photobioreactor," J. Applied Phycology, Vol. 8, No. 2, pp. 139-45, 1996. https://doi.org/10.1007/BF02186317
  34. E1-Shishtawy, R. M. A., Kawasaki, S. and Morimoto, M., "Cylindrical-4Type Induced and Diffused photobioreactor. A Novel Photoreactor for Large- Scale H2 Production: in Zaborsky, O. R. (Ed.), Biohydrogen," Plenum Press, pp. 353-358, 1998.
  35. Jorg, D., Andrea, U., Axel, R., Ulrike, S. and Walter, T., "A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect," Journal of Biotechnology, Vol. 92, No. 2, pp.89-94, 2001. https://doi.org/10.1016/S0168-1656(01)00350-9
  36. Ugwu, C. U., Aoyagi, H. and Uchiyama, H., "Photobioreactors for mass cultivation of algae," Bioresource Technology, Vol. 99, No. 10, pp. 4021-4028, 2008. https://doi.org/10.1016/j.biortech.2007.01.046
  37. Fouchard, S., Pruvost, J. and Legrand, J., "Investigation of H2 production by microalgae in a fully-controlled Photobioreactor," J. Hydrogen Energy, Vol. 16, pp. 13-16, 2006.
  38. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N. and Tredici, M. R., "Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost Photobioreactor," Biotechnol. Bioeng., Vol. 102, No. 1, pp. 100-112, 2009. https://doi.org/10.1002/bit.22033
  39. Ogbonna, J., Soejima, T. and Tanaka, H., "Development of Efficient Large-scale Photobioreactors," Plenum Press, pp. 329-343, 1998.
  40. Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A., "Commercial Applications of Microalgae," J. Biosci. Bioeng., Vol. 101, No. 2, pp. 87-96, 2006. https://doi.org/10.1263/jbb.101.87