고분자 전해질 연료전지 백금-루테늄 나노입자 촉매의 전기화학적 거동에 대한 중형기공 탄소 지지체의 활성화 효과

Influence of Activation of Mesoporous Carbon on Electrochemical Behaviors of Pt-Ru Nanoparticle Catalysts for PEMFCs

  • 투고 : 2010.08.04
  • 심사 : 2010.09.20
  • 발행 : 2011.01.25

초록

본 연구에서는 고분자 전해질 연료전지의 타소 지지체로 중형기공 실리카(SBA-15)를 이용한 전통적인 주형합성법을 이용하여 중형기공 탄소(CMK-3)를 합성하였다. 합성된 CMK-3는 추가적으로 비표면적과 물리적 성질을 증가시키기 위하여 활성화제로 수산화 칼륨 (KOH)양을 0, 1, 3, 및 4g으로 달리하여 활성화하였다. 그리고 활성화된 CMK-3(K-CMK-3)에 화학적 환원 방법을 이용하여 백금과 루테늄을 답지하였다. CMK-3에 담지된 백금-루테늄 촉매의 특성을 확인하기 위해 비표면적 장치(BET), X-선 회절분석법(XRD), 주사전자현미경(SEM), 투과전자현미정(TEM), 유도결합 플라즈마 질량분석기(ICP-MS)를 이용하였다. 또한, 백금 루테늄 촉매의 전기화학적인 특성을 순환전류전압 실험으로 분석하였다. 결론적으로, 3 g의 KOH로 활성화된 CMK-3(K3g-CMK-3)가 가장 넓은 비표면적을 나타냈다. 또한, K3g-CMK-3의 높은 비표면적은 백금-루테늄의 균일한 분산과 함께 전기적인 촉매의 성능을 향상시키는 것을 확인할 수 있었다.

In this work, mesoporous carbons (CMK-3) were prepared by a conventional templating method using mesoporous silica (SBA-15) for using catalyst supports in polymer electrolyte membrane fuel cells (PEMFCs). The CMK-3 were chemically activated to obtain high surface area and small pore diameter with different potassium hydroxide (KOH) amounts, i.e., 0, 1, 3, and 4 g as an activating agent. And then Pt-Ru was deposited onto activated CMK-3 (K-CMK-3) by a chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto K-CMK-3 were determined by surface area and pore size analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and inductive coupled plasma-mass spectrometry (ICP-MS). The electrochemical properties of Pt-Ru/K-CMK-3 catalysts were also analyzed by cyclic voltammetry (CV). From the results, the K3g-CMK-3 carbon supports activated with 3 g KOH showed the highest specific surface areas. In addition, the K3g-CMK-3 led to uniform dispersion of Pt-Ru onto K-CMK-3, resulted in the enhancement of elelctro-catalystic activity of Pt-Ru catalysts.

키워드

참고문헌

  1. A. Mcdougall, Fuel Cells, John Wiley & Sons, New York, 1976.
  2. R. Sellin, C. Grolleau, S. A. Clacens, S. Pronier, J. Clacens, C. Coutanceau, and J. Leger, J. Phys. Chem. C, 113, 21735 (2009). https://doi.org/10.1021/jp907326q
  3. M. Boaro, V. Modafferi, A. Pappacena, J. Llorca, V. Baglio, F. Frusteri, P. Frontera, A. Trovarelli, and P. L. Antonucci, J. Power Sources, 195, 649 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.006
  4. G. Y. Moon and J. W. Rhim, Macromol. Res., 15, 379 (2007). https://doi.org/10.1007/BF03218802
  5. C. H. Lee, C. H. Park, and Y. M. Lee, J. Membr. Sci., 313, 199 (2008). https://doi.org/10.1016/j.memsci.2008.01.004
  6. Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, and Q. Xin, Chem. Commun., 2003, 394 (2003).
  7. S. W. Yoon, D. H. Kim, B. S. Lee, B. S. Lee, G. Y. Moon, H. S. Byun, and J. W. Rhim, Polymer(Korea), 34, 45 (2010).
  8. D. S. Kim, I. C. Park, H. I. Cho, D. H. Kim, G. Y. Moon, and J. W. Rh, J. Ind. Eng. Chem., 2, 265 (2009).
  9. H. Liu, M. H. Lee, and J. Lee, Macromol. Res., 17, 725 (2009). https://doi.org/10.1007/BF03218605
  10. M. Ciureanu, D. Mikhailenko, and S. Kaliaguine, Catal. Today, 82, 195 (2003).
  11. S. J. Park, H. J. Jung, and C. H. Na, Polymer(Korea), 27, 46 (2003).
  12. S. Kim and S. J. Park, Electrochim. Acta, 53, 3013 (2007).
  13. S. J. Park and J. S. Kim, J. Colloid Interface Sci., 244, 336 (2001). https://doi.org/10.1006/jcis.2001.7920
  14. D. H. Kim, B. S. Lee, S. W. Yoon, J. W. Rhim, and H. S. Byun, Membr. J., 18, 336 (2008).
  15. S. B. Ha, H. S. Kim, J. S Choi, W. S. Chung, and H. I. Lee, Appl. Chem., 7, 731 (2003).
  16. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredirckson, B. F. Chemlka, and G. D. Stucky, Science, 279, 548 (1998). https://doi.org/10.1126/science.279.5350.548
  17. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin, and R. Ryoo, Nature, 408, 449 (2000). https://doi.org/10.1038/35044040
  18. A. J. Appleby, J. Power Sources, 63, 280 (1996). https://doi.org/10.1016/S0378-7753(96)02642-0
  19. D. I. Jang, K. S. Cho, and S. J. Park, J. Kor. Ind. Eng. Chem., 20, 658 (2009).
  20. D. S. Kim, M. D. Guiver, T. I. Yun, M. Y. S, and J. W. Rhim, J. Membr. Sci., 281, 156 (2006). https://doi.org/10.1016/j.memsci.2006.03.025
  21. S. Kim, J. R. Lee, and S. J. Park, Kor. Chem. Eng. Res., 46, 118 (2008).
  22. W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, and Q. Xin, Carbon, 40, 791 (2002). https://doi.org/10.1016/S0008-6223(02)00039-8
  23. K. Chan, J. Ding, J. Ren, S. Cheng, and K. Y. Tsang, J. Mater. Chem., 14, 505 (2004). https://doi.org/10.1039/b314224h
  24. T. J. Kim and C. K. Park, J. Kor. Ind. Eng. Chem., 11, 40 (2000).
  25. Y. Lee, C. W. Lee, H. S. Kang, Y. H. Jang, and Y. M. Hahm, Appl. Chem., 1, 398 (1997).
  26. Y. H. Kim and S. J. Park, Appl. Chem. Eng., 21, 183 (2010).
  27. S. Kim and S. J. Park, J. Solid State Electro., 11, 821 (2007). https://doi.org/10.1007/s10008-006-0228-6
  28. C. Y. Chen, P. Yang, Y. S. Lee, and K. F. Lin, J. Power Sources, 141, 24 (2005). https://doi.org/10.1016/j.jpowsour.2004.09.011
  29. M. Neergat and A. K. Shukla, J. Power Sources, 102, 317 (2001). https://doi.org/10.1016/S0378-7753(01)00766-2
  30. M. Gotz and H. Wendt, Electrochim. Acta, 43, 3637 (1998). https://doi.org/10.1016/S0013-4686(98)00121-2