Preparation and Characterization of Polyvinylpyrrolidone/${\kappa}$-Carrageenan/Hexanediol Hydrogel by Gamma-ray Irradiation

감마선을 이용한 폴리비닐피롤리돈/카파-카라기난/1,2-헥산디올 하이드로젤의 제조 및 특성

  • Han, Il-Soo (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lim, Youn-Mook (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Gwon, Hui-Jeong (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Park, Jong-Seok (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Nho, Young-Chang (Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 한일수 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 임윤묵 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 권희정 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 박종석 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부) ;
  • 노영창 (한국원자력연구원 정읍방사선과학연구소 방사선공업환경연구부)
  • Received : 2010.06.28
  • Accepted : 2010.10.05
  • Published : 2011.01.25

Abstract

In this study, the hydrogels composed of polyvinylpyrrolidone (PVP), ${\kappa}$-carrageenan (${\kappa}C$), and 1,2-hexanediol (HD) were prepared by ${\gamma}$-ray irradiation. The radiation dose was 25 kGy and the concentration of ${\kappa}C$ was 3 wt%. The physical properties of the hydrogels were investigated as a function of the concentrations of PVP and HD. The gel content and the tensile strength increased with increasing PVP concentration due to the crosslinking between the pyrrolidone molecules and decreased with increasing HD concentration. The degree of swelling was inversely proportional to the gel content because the highly crosslinked hydrogels had a tighter structure, hence reducing their water absorption. The antibacterial tests indicated that the hydrogels containing HD had antibacterial activity.

본 연구에서는 생체 적합성이 우수한 합성고분자 폴리비닐피롤리돈(PVP)과 천연고분자 카피-카라기난(${\kappa}C$), 1,2-헥산디올(HD)을 혼합하여 감마선 조사에 의한 방사선 가교로 하이드로젤을 제조하였다. 방사선 조사량은 25 kGy, ${\kappa}C$의 농도는 3 wt%로 고정하였다. 이렇게 제조된 하이드로젤의 의 PVP, HD의 농도에 따른 물리적 특성을 관찰하였다. PVP의 농도가 증가할수록 피롤리돈 분자 사이의 가교반응으로 젤화율과 연장강도는 증가하였고, 팽윤도는 감소하였다. 반면에 HD의 농도가 증가할수록 젤화율과 인장강도는 감소하였으며, 팽윤도는 증가하였다. 항균성 실험을 통해 HD를 함유한 하이드로젤에서 항곰팡이성 활성이 관찰되었다.

Keywords

References

  1. M. Szycher, S. James, and J. D. Lee, J. Biomater. Appl., 7, 142 (1992). https://doi.org/10.1177/088532829200700204
  2. J. H. Lee, Y. S. Cho, H. H. Kim, and J. S. Lee, Biomater. Res., 2, 180 (1998).
  3. F. H. Silver and C. Doillon, Biocompatibility, Interactions of Biological and Implantable Materials, VCH, New York, 1989.
  4. N. A. Peppas, Editor, Hydrogels in Medicine and Pharmacy, Boca Raton, CRC Press, Florida, Vol. I, II, III (1986, 1987).
  5. D. G. Pedley, P. J. Skelly, and B. J. Tighe, Brit. Polym. J., 12, 99 (1980).
  6. S. Y. Jo, Y. M. Lim, M. H. Youn, H. J. Gwon, J. S. Park, Y. C. Nho, and H. S. Shin, Polymer(Korea), 33, 551 (2009).
  7. V. Kudela, Polymers: Biomaterials and Medical Applications, J. I. Kroschwitz, Editor, John Wiley & Sons, New York, p.228 (1989).
  8. J. M. Rosiak, J. Control. Release, 31, 9 (1994). https://doi.org/10.1016/0168-3659(94)90246-1
  9. J. M. Rosiak, P. Ulanski, L. A. Pajensky, F. Yoshii, and K. Makuuchi, Radiat. Phys. Chem., 46, 161 (1995). https://doi.org/10.1016/0969-806X(95)00007-K
  10. R. L. Clough and S. W. Shalaby, Radiation Effects on Polymers, Maple Press, Pennsylvania, p.271 (1990).
  11. T. Kinnunen and M. Hannuksela, Contact Dermatitis, 21, 154 (1989). https://doi.org/10.1111/j.1600-0536.1989.tb04728.x
  12. T. Kinnunen and M. Koskela, Acta Derm Venereol(Stockh), 71, 148 (1991).
  13. Y. H. Park, D. S. Chang, and S. B. Kim, Fisheries Processing and Utilization, Hyungsul Pub., Seoul, p.290 (1995).
  14. C. L. Araki, Some Recent Studies on the Polysaccharides of Agarophytes, Pergamin Press, London, p.3 (1965).
  15. J. M. Roisak, A. Rucinska-Rybus, and W. Pekala, U.S. Patent 4,871,490 (1989).
  16. B. S. Ko, J. H. Shin, J. Y. Sohn, Y. C. Nho, and P. H. Kang, Polymer(Korea), 33, 268 (2009).
  17. C. H. Jung, B. M. Lee, I. T. Hwang, J. H. Choi, Y. C. Nho, and S. G. Hong, Polymer(Korea), 34, 150 (2010).
  18. E. K. Choi, H. I. Kim, and Y. C. Nho, Polymer(Korea), 27, 349 (2003).
  19. G. Skelhorne and H. Munro, Med. Device Technol., 9, 19 (2002).
  20. C. Tranquilan-Aranilla, F. Yoshii, A. M. Dela Rosa, and K. Makuuchi, Radiat. Phys. Chem., 55, 127 (1999). https://doi.org/10.1016/S0969-806X(98)00317-X
  21. L. F. Miranda, A. B. Lugao, L. D. B. Machado, and L. V. Ramanathan, Radiat. Phys. Chem., 55, 709 (1999). https://doi.org/10.1016/S0969-806X(99)00216-9
  22. T. Hirai, T. Okinaka, Y. Amemiya, K. Kobayashi, M. Hirai, and S. Hayashi, Angew. Makromol. Chem., 240, 213 (1996). https://doi.org/10.1002/apmc.1996.052400120