DOI QR코드

DOI QR Code

Surface roughness changes caused by the galvanic corrosion between a titanium abutment and base metal alloy

티타늄 지대주와 비귀금속 합금사이의 갈바닉 부식에 의한 표면 거칠기 변화 평가

  • Lee, Jung-Jin (Department of Prosthodontics, Collage of Dentistry, Chonbuk National University) ;
  • Song, Kwang-Yeob (Department of Prosthodontics, Collage of Dentistry, Chonbuk National University) ;
  • Ahn, Seung-Keun (Department of Prosthodontics, Collage of Dentistry, Chonbuk National University) ;
  • Park, Ju-Mi (Department of Prosthodontics, Collage of Dentistry, Chonbuk National University)
  • 이정진 (전북대학교 치의학전문대학원 치과보철학교실) ;
  • 송광엽 (전북대학교 치의학전문대학원 치과보철학교실) ;
  • 안승근 (전북대학교 치의학전문대학원 치과보철학교실) ;
  • 박주미 (전북대학교 치의학전문대학원 치과보철학교실)
  • Received : 2010.12.29
  • Accepted : 2011.01.13
  • Published : 2011.01.31

Abstract

Purpose: The purpose of this study was to evaluate the level of electro-chemical corrosion and surface roughness change for the cases of Ti abutment connected to restoration made of base metal alloys. Materials and methods: It was hypothesized that Ni-Cr alloys in different compositions possess different corrosion resistances, and thus the specimens ($13{\times}13{\times}1.5\;mm$) in this study were fabricated with 3 different types of metal alloys, commonly used for metal ceramic restorations. The electrochemical characteristics were evaluated with potentiostat (Parstat 2273A) and the level of surface roughness change was observed with surface roughness tester. Paired t-test was used to compare mean average surface roughness (Ra) changes of each specimen group. Results: All specimens made of nickel-chromium based alloys, average surface roughness was increased significantly (P < .05). Among them, the Ni-Cr-Be alloy ($0.016{\pm}.007\;{\mu}m$) had the largest change of roughness followed by Ni-Cr ($0.012{\pm}.003\;{\mu}m$) and Ni-Cr-Ti ($0.012{\pm}.002\;{\mu}m$) alloy. There was no significant changes in surface roughness between each metal alloys after corrosion. Conclusion: In the case of galvanic couples of Ti in contact with all specimens made of nickel-chromium based alloys, average surface roughness was increased.

연구 목적: 이 연구의 목적은 티타늄 지대주와 비귀금속 보철물이 접촉한 경우를 가정하여 이종 금속간 접촉에 의한 갈바닉 부식으로 인해 발생하는 표면 거칠기 변화를 비교, 평가하고자 하였다. 연구 재료 및 방법: 성분과 조성이 다른 3종의 Ni-Cr합금 (T3, Bella bond plus, Tilite)과 cp 티타늄 Grade 2를 이용하여 $13{\times}13{\times}1.5\;mm$의 크기로 시편을 각 군당 6개씩 제작하였다. 연마과정 후 절연 테이프로 직경 6 mm만을 노출시켜 potentiostat (Parastat 2273A)를 이용하여 동전위 분극 시험과 갈바닉 부식 시험을 시행하였으며, 표면 거칠기 측정기(Surftester SV-3000)를 이용하여 부식 전 후 거칠기를 평가하였다. 측정값을 paired t-test와 One-way ANOVA로 분석하였다. 결과: 티타늄과 접촉한 모든 Ni-Cr 시편의 표면 거칠기는 통계적으로 유의하게 증가하였다. 증가량은 베릴륨을 포함한 T3합금 ($0.016{\pm}.007\;{\mu}m$)이 가장 컸으며, 베릴륨을 포함하지 않은 Bella bond plus ($0.012{\pm}.003\;{\mu}m$), 티타늄을 첨가한 Tilite ($0.012{\pm}.002\;{\mu}m$)는 큰 차이를 보이지 않았다. 금속 종류에 따른 거칠기 증가는 유의한 차이를 보이지 않았다. 결론: 티타늄과 접촉한 비귀금속 합금은 갈바닉 부식에 의해 표면 거칠기가 증가하였다.

Keywords

References

  1. Council on Dental Materials, Instruments, and Equipment. American Dental Association status report on the occurrence of galvanic corrosion in the mouth and its potential effects. J Am Dent Assoc 1987;115:783-7. https://doi.org/10.14219/jada.archive.1987.0301
  2. Geis-Gerstorfer J, Weber H, Sauer KH. In vitro substance loss due to galvanic corrosion in Ti implant/Ni-Cr supraconstruction systems. Int J Oral Maxillofac Implants 1989;4:119-23.
  3. Goehlich V, Marek M. Corrosion behavior of Pd-Cu and Pd-Co alloys in synthetic saliva. Dent Mater 1990;6:103-10. https://doi.org/10.1016/S0109-5641(05)80039-9
  4. Schmalz G, Garhammer P. Biological interactions of dental cast alloys with oral tissues. Dent Mater 2002;18:396-406. https://doi.org/10.1016/S0109-5641(01)00063-X
  5. Wylie CM, Shelton RM, Fleming GJ, Davenport AJ. Corrosion of nickel-based dental casting alloys. Dent Mater 2007;23:714-23. https://doi.org/10.1016/j.dental.2006.06.011
  6. Gil FJ, Sanchez LA, Esplias A, Planell JA. In vitro corrosion behaviour and metallic ion release of different prosthodontic alloys. Int Dent J 1999;49:361-7. https://doi.org/10.1111/j.1875-595X.1999.tb00538.x
  7. Venugopalan R, Lucas LC. Evaluation of restorative and implant alloys galvanically coupled to titanium. Dent Mater 1998;14:165- 72. https://doi.org/10.1016/S0109-5641(98)00024-4
  8. Quirynen M, Bollen CM. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J Clin Periodontol 1995;22:1-14.
  9. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 1997;13:258-69. https://doi.org/10.1016/S0109-5641(97)80038-3
  10. Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Implants Res 1996;7:201-11. https://doi.org/10.1034/j.1600-0501.1996.070302.x
  11. ISO 10271 Standard. Dental metallic materials-corrosion test methods. 1st ed. Switzerland: ISO Geneva; 2001.
  12. Kay KS, Chung CH, Kang DW, Kim BO, Hwang HG, Ko YM. A study on the galvanic corrosion of titanium using the immersion and electrochemical method. J Korean Acad Prosthodont 1995; 33:584-609.
  13. Oh KT, Kim KN. Electrochemical properties of suprastructures galvanically coupled to a titanium implant. J Biomed Mater Res B Appl Biomater 2004;70B:318-31.
  14. Lucas LC, Lemons JE. Biodegradation of restorative metallic systems. Adv Dent Res 1992;6:32-7. https://doi.org/10.1177/08959374920060011301
  15. Choi BC, Kim CW. Corrosion of porcelain-fused-to-metal alloys. Dent Mater J SNU 1992;2:155-189.
  16. Korean council for the faculty of dental materials. Dental materials. 4th ed. Seoul; Koonja publishing Inc.; 2006. pp. 335-6.

Cited by

  1. Effect of various abutment systems on the removal torque and the abutment settling in the conical connection implant systems vol.50, pp.2, 2012, https://doi.org/10.4047/jkap.2012.50.2.92
  2. 비귀금속 주조 맞춤형 지대주를 이용한 상악 전치부 임플란트 보철수복 증례 vol.31, pp.1, 2015, https://doi.org/10.14368/jdras.2015.31.1.50