DOI QR코드

DOI QR Code

Effects of Interface Soaking on Strain Modulation in InAs/GaSb Strained-Layer Superlattices

계면 흡착에 의한 InAs/GaSb 초격자의 응력변조 효과

  • Shin, H.W. (Department of Physics, Kyung Hee University) ;
  • Choe, J.W. (Department of Physics, Kyung Hee University) ;
  • Kim, J.O. (Global Research Laboratory on Quantum Detector Technology, Nano Materials Evaluation Center, Korea Research Institute of Standards and Science) ;
  • Lee, S.J. (Global Research Laboratory on Quantum Detector Technology, Nano Materials Evaluation Center, Korea Research Institute of Standards and Science) ;
  • Kim, C.S. (Global Research Laboratory on Quantum Detector Technology, Nano Materials Evaluation Center, Korea Research Institute of Standards and Science) ;
  • Noh, S.K. (Global Research Laboratory on Quantum Detector Technology, Nano Materials Evaluation Center, Korea Research Institute of Standards and Science)
  • 신현욱 (경희대학교 물리학과) ;
  • 최정우 (경희대학교 물리학과) ;
  • 김준오 (한국표준과학연구원 나노소재평가센터 양자검출소자기술 글로벌연구실) ;
  • 이상준 (한국표준과학연구원 나노소재평가센터 양자검출소자기술 글로벌연구실) ;
  • 김창수 (한국표준과학연구원 나노소재평가센터 양자검출소자기술 글로벌연구실) ;
  • 노삼규 (한국표준과학연구원 나노소재평가센터 양자검출소자기술 글로벌연구실)
  • Received : 2010.10.17
  • Accepted : 2010.11.29
  • Published : 2011.01.30

Abstract

In this study, the interface soaking effect in InAs/GaAs strained-layer superlattice (SLS) on crystalline phase modulation has been analyzed by the x-ray diffraction (XRD) curve. The strain variation induced by As and/or Sb soaking was determined by the separation angle between the substrate peak and the 0th-order superlattice satellite peak in the XRD spectra. Contrated that the As/InAs soaking arises minor GaAs-like interfacial layer, the Sb/GaSb soaking induces InSb-like one. The Fourier-transformed curves of the Pendellosung interference oscillation shows that the optimum soaking times of As/InAs and Sb/GaSb are 2 sec and 12 sec, at which the highest crystallineity has, respectively. An anomalous twin-peak phenomenon that a satellite peak splits into two peaks was observed in the SLS structure co-soaked by As and Sb at InAs${\rightarrow}$GaSb interfaces. We suggest that it may be resulted from coexistence of two kinds crystalline phases of InAsSb and GaAsSb due to intermixing of In${\leftrightarrow}$Ga and Sb${\leftrightarrow}$As.

본 연구에서는 InAs/GaSb 응력초격자(SLS)의 계면 흡착(soaking)에 의한 응력변조 효과를 X선회절(XRD)을 통하여 분석하였다. As과 Sb 흡착에 의하여 유도된 응력의 변화는 XRD 곡선의 기판피크과 0차 위성피크 사이의 분리각으로부터 조사하였으며, As/InAs 흡착은 약간의 GaAs-like 계면층을 유발하는 반면, Sb/GaSb 흡착은 InSb-like 계면상을 유도하는 것으로 분석되었다. Pendellosung 간섭진동의 Fourier 변환 곡선을 이용하여, [InAs/GaSb]-SLS 성장에서 결정성이 가장 우수한 최적 As/InAs와 Sb/GaSb의 흡착시간은 각각 2 sec와 10 sec임을 밝혔다. InAs${\rightarrow}$GaSb 계면에 As과 Sb를 동시에 흡착시킨 SLS에서 XRD 위성피크가 2개로 분할되는 특이한 쌍정현상이 관측되었는데, 이것은 계면에서 In${\leftrightarrow}$Ga 및 Sb${\leftrightarrow}$As 상호혼합에 의한 InSbAs와 GaAsSb의 2종의 결정상이 공존함으로써 발생한 현상으로 추정된다.

Keywords

References

  1. D. L. Smith and C. Mailhiot, J. Appl. Phys. 62, 2545 (1987). https://doi.org/10.1063/1.339468
  2. B. -M. Nguyen, D. Hoffman, P. -Y. Delaunay, and M. Razeghi, Appl. Phys. Lett. 91, 163511 (2007). https://doi.org/10.1063/1.2800808
  3. P. Piquini, A. Zunger, and R. Magri, Phys. Rev. B 77, 115314 (2008). https://doi.org/10.1103/PhysRevB.77.115314
  4. E. Plis, J. B. Rodriguez, H. S. Kim, G. Bishop, Y. Sharma, R. Dawson, S. J. Lee, C. E. Jones, V. Gopal, and S. Krishna, Appl. Phys. Lett. 91, 133512 (2007). https://doi.org/10.1063/1.2790078
  5. S. J. Lee, S. K. Noh, E. Plis, S. Krishna, and K.-S. Lee, Appl. Phys. Lett. 95, 102106 (2009). https://doi.org/10.1063/1.3212738
  6. S. Mou, A. Petschke, Q. Liu, S. L. Chuang, J. V. Li, and C. J. Hill, Appl. Phys. Lett. 92, 153505 (2008). https://doi.org/10.1063/1.2909538
  7. S. Maison and G. W. Wicks, Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  8. A. Khoshakhlagh, J. B. Rodriguez, E. Plis, G. D. Bishop, Y. D. Sharma, H. S. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 263504 (2007). https://doi.org/10.1063/1.2824819
  9. E. Crobin, M. J. Shaw, M. R. Kitchin, J. P. Hagon, and M. Jaros, Semicond. Sci. Technol. 16, 263 (2001). https://doi.org/10.1088/0268-1242/16/4/314
  10. H. S. Kim, E. Plis, J. B. Rodriguez, G. D. Bishop, Y. D. Sharma, L. R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger, and M. Sundaram, Appl. Phys. Lett. 92, 183502 (2008). https://doi.org/10.1063/1.2920764
  11. S. J. Lee, S. K. Noh, S. H. Bae, and H. Jung, J. Korean Vac. Soc. In print (2010).
  12. S. Maison and G. W. Wicks, Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  13. S. J. Lee, S. K. Noh, L. R. Dawson, and S. Krishna, J. Korean Phys. Soc. 54, 280 (2009). https://doi.org/10.3938/jkps.54.280
  14. X. B. Zhang, J. H. Ryou, R. D. Dupuis, S. Mou, S. L. Chuang, C. Xu, and K. C. Hsieh, J. Cryst. Growth 287, 545 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.025
  15. G. C. Dente and M. L. Tilton, J. Appl. Phys. 86, 1420 (1999). https://doi.org/10.1063/1.370905
  16. X. B. Zhang, J. H. Ryou, R. D. Dupuis, C. Xu, S. Mou, A. Petschke, K. C. Hsieh, and S. L. Chuang, Appl. Phys. Lett. 90, 131110 (2007). https://doi.org/10.1063/1.2717524
  17. A. Fasolino, E. Molinari, and J. C. Maan, Phys. Rev. B 33, 8889 (1986). https://doi.org/10.1103/PhysRevB.33.8889
  18. J. Steinshnider, M. Weimer, R. Kaspi, and G. W. Turner, Phys. Rev. Lett. 85, 2953 (2000). https://doi.org/10.1103/PhysRevLett.85.2953
  19. H. Kroemer, Physica E 20, 196 (2004). https://doi.org/10.1016/j.physe.2003.08.003
  20. J. O. Kim, H. W. Shin, J. W. Choe, S. J. Lee, C. S. Kim, and S. K. Noh, J. Korean Vac. Soc. 18, 245 (2009). https://doi.org/10.5757/JKVS.2009.18.4.245
  21. B. J. Spencer, P. W. Voorhees, and J. Tersoff, Phys. Rev. B 64, 235318 (2001). https://doi.org/10.1103/PhysRevB.64.235318
  22. J. H. Li, D. W. Stokes, O. Caha, S. L. Ammu, J. Bai, K. E. Bassler, and S. C. Moss, Phys. Rev. Lett. 95, 096104 (2005). https://doi.org/10.1103/PhysRevLett.95.096104

Cited by

  1. A Study on THz Generation and Detection Characteristics of InGaAs Semiconductor Epilayers vol.21, pp.5, 2012, https://doi.org/10.5757/JKVS.2012.21.5.264
  2. Influence of InGaAs Capping Layers on the Properties of InAs/GaAs Quantum Dots vol.21, pp.6, 2012, https://doi.org/10.5757/JKVS.2012.21.6.342
  3. Optical Properties of InAs Quantum Dots Grown by Changing Arsenic Interruption Time vol.22, pp.2, 2013, https://doi.org/10.5757/JKVS.2013.22.2.86