DOI QR코드

DOI QR Code

A Modified Enskog-Like Equation of Self-Diffusion Coefficients for Penetrable-Sphere Model Fluids

  • Suh, Soong-Hyuck (Department of Chemical Engineering, Keimyung University) ;
  • Liu, Hong-Lai (Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology)
  • Received : 2010.12.31
  • Accepted : 2011.03.03
  • Published : 2011.04.20

Abstract

Molecular dynamics simulations have been performed to investigate the transport properties of self-diffusion coefficients in the penetrable-sphere model system. The resulting simulation data for the product of the packing fraction and the self-diffusion coefficient exhibit a transition from an increasing function of density in lower repulsive systems, where the soft-type collisions are dominant, to a decreasing function in higher repulsive systems, where most particle collisions are the hard-type reflections due to the low-penetrability effects. A modified Enskog-like equation implemented by the effective packing fraction with the mean-field energy correction is also proposed, and this heuristic approximation yields a reasonably good result even in systems of high densities and high repulsive energy barriers.

Keywords

References

  1. Hu, Y.; Liu, H.-L. Fluid Phase Equilibria 2006, 241, 248. https://doi.org/10.1016/j.fluid.2005.12.015
  2. Likos, C. N. Phys. Rep. 2001, 348, 267. https://doi.org/10.1016/S0370-1573(00)00141-1
  3. Marquest, C.; Witten, T. A. J. Phys. (France) 1989, 50, 1267. https://doi.org/10.1051/jphys:0198900500100126700
  4. Likos, C. N.; Watzlawek, M.; Löwen, H. Phys. Rev. E 1998, 58,3135. https://doi.org/10.1103/PhysRevE.58.3135
  5. Schmidt, M. J. Phys.: Condens. Matter 1999, 11, 10163. https://doi.org/10.1088/0953-8984/11/50/309
  6. Fernaud, M. J.; Lomba, E.; Lee, L. L. J. Chem. Phys. 2000, 112,810. https://doi.org/10.1063/1.480649
  7. Schmidt, M.; Fuchs, M. J. Chem. Phys. 2002, 117, 6308. https://doi.org/10.1063/1.1503303
  8. Choudhury, N.; Ghosh, S. K. J. Chem. Phys. 2003, 119, 4827. https://doi.org/10.1063/1.1589747
  9. Acedo, L.; Santos, A. Phys. Lett. A 2004, 323, 427. https://doi.org/10.1016/j.physleta.2004.02.039
  10. Malijevsky, A.; Santos, A. J. Chem. Phys. 2006, 124, 074508. https://doi.org/10.1063/1.2166385
  11. Santos, A.; Malijevsky, A. Phys. Rev. E 2007, 75, 021201. https://doi.org/10.1103/PhysRevE.75.021201
  12. Santos, A.; Malijevsky, A. Phys. Rev. E 2007, 75, 049901 https://doi.org/10.1103/PhysRevE.75.049901
  13. Malijevsky, A.; Yuste, S. B.; Santos, A. Phys. Rev. E 2007, 76, 021504. https://doi.org/10.1103/PhysRevE.76.021504
  14. Kim, S.-C.; Suh, S.-H. J. Chem. Phys. 2002, 117, 9880. https://doi.org/10.1063/1.1518689
  15. Zhou, S.; Ruckenstein, E. J. Chem. Phys. 2000, 112, 8079. https://doi.org/10.1063/1.481407
  16. Kim, S.-C.; Seong, B.-S.; Suh, S.-H. J. Chem. Phys. 2009, 131,134701. https://doi.org/10.1063/1.3243317
  17. Suh, S.-H.; Kim, C.-H.; Kim, S.-C.; Santos, A. Phys. Rev. E 2010,82, 051202. https://doi.org/10.1103/PhysRevE.82.051202
  18. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon: Oxford, 1987.
  19. Suh, S.-H.; Park, J.-W.; Ha, K.-R.; Kim, S.-C.; MacElroy, J. M. D.Molecular Simulation 2001, 27, 387. https://doi.org/10.1080/08927020108031360
  20. Chapman, S.; Cowling, T. G. The Mathematical Theory of Nonuniform Gases; Cambridge University Press: Cambridge, England,1970.
  21. Santos, A. In Rarefied Gas Dynamics: 24th International Symposium on Rarefied Gas Dynamics; AIP Conf. Proc. No. 762, AIP; Melville, NY, 2005; pp 276-281.
  22. Hansen, J.-P.; McDonald, I. R. Theory of Simple Liquids; Academic: Amsterdam, 2006.
  23. Speedy, R. J. Mol. Phys. 1987, 62, 509. https://doi.org/10.1080/00268978700102371
  24. Sigurgeirsson, H.; Heyes, D. M. Mol. Phys. 2003, 101, 469. https://doi.org/10.1080/0026897021000037717
  25. Carnahan, N. F.; Starling, K. E. J. Chem. Phys. 1969, 51, 635. https://doi.org/10.1063/1.1672048

Cited by

  1. Stochastic dynamics of penetrable rods in one dimension: Entangled dynamics and transport properties vol.142, pp.15, 2015, https://doi.org/10.1063/1.4918370
  2. The Empirical Enskog-Like Approximation of Shear Viscosity in the Penetrable-Sphere Model vol.33, pp.6, 2011, https://doi.org/10.5012/bkcs.2012.33.6.2047