DOI QR코드

DOI QR Code

The Effect of CTAB on the Citrate Sol-gel Process for the Synthesis of Sodium Beta-Alumina Nano-Powders

  • Wang, Zaihua (Key Laboratory of Renewable Energy and Gas Hydrate, Institute of Energy Conversion, Chinese Academy of Sciences) ;
  • Li, Xinjun (Key Laboratory of Renewable Energy and Gas Hydrate, Institute of Energy Conversion, Chinese Academy of Sciences) ;
  • Feng, Ziping (Key Laboratory of Renewable Energy and Gas Hydrate, Institute of Energy Conversion, Chinese Academy of Sciences)
  • Received : 2010.11.29
  • Accepted : 2011.02.22
  • Published : 2011.04.20

Abstract

Sodium beta-alumina (SBA) nano-powders were synthesized by the citrate sol-gel process, and the effects of the cationic surfactant n-cetyltrimethylammonium bromide surfactant (CTAB) were investigated. The structure and morphology of the nano-powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) techniques, respectively. The effects of CTAB on the citrate sol-gel process and the SBA formation were investigated by thermo gravimetric/differential thermal analysis (TG/DTA) and Fourier transform infrared spectroscopy (FTIR). The conductivity of ceramic pellets of SBA was measured by electrochemical impedance spectroscopy (EIS). The results showed that the CTAB inhibited the agglomeration of SBA powders effectively and consequently decreased the crystallization temperature of SBA, about $150^{\circ}C$ lower than that of the sample without CTAB. The measured conductivity of SBA was $1.21{\times}10^{-2}S{\cdot}cm^{-1}$ at $300^{\circ}C$.

Keywords

References

  1. Terabe, K.; Yamaguchi, S.; Iguchi, Y.; Imai, A. Solid State Ionics 1990, 40-41, 111. https://doi.org/10.1016/0167-2738(90)90299-7
  2. Oshima, T.; Kajita, M.; Okuno, A. International Journal of Applied Ceramic Technology 2004, 1, 269.
  3. Sakka, Y.; Honda, A.; Suzuki, T. S.; Moriyoshi, Y. Solid State Ionics 2004, 172, 341. https://doi.org/10.1016/j.ssi.2004.02.049
  4. Morgan, P. E. D. Mater. Res. Bull. 1976, 11, 233. https://doi.org/10.1016/0025-5408(76)90080-5
  5. Jayaraman, V.; Gnanasekaran, T.; Periaswami, G. Mater. Lett. 1997, 30, 157. https://doi.org/10.1016/S0167-577X(96)00193-0
  6. Kutty, T. R. N.; Jayaraman, V.; Periaswami, G. Mater. Res. Bull. 1996, 31, 1159. https://doi.org/10.1016/0025-5408(96)00106-7
  7. Subasri, R. Mater. Sci. Eng., B 2004, 112, 73. https://doi.org/10.1016/j.mseb.2004.06.005
  8. Subasri, R.; Mathews, T.; Sreedharan, O. M.; Raghunathan, V. S. Solid State Ionics 2003, 158, 199. https://doi.org/10.1016/S0167-2738(02)00772-5
  9. Pekarsky, A.; Nicholson, P. S. Mater. Res. Bull. 1980, 15, 1517. https://doi.org/10.1016/0025-5408(80)90111-7
  10. Park, H. C.; Lee, Y. B.; Lee, S. G.; Lee, C. H.; Kim, J. K.; Hong, S. S.; Park, S. S. Ceram. Int. 2005, 31, 293. https://doi.org/10.1016/j.ceramint.2004.05.019
  11. Mathews, T. Mater. Sci. Eng., B 2000, 78, 39. https://doi.org/10.1016/S0921-5107(00)00512-2
  12. Thompson, S.; Shirtcliffe, N. J.; O'Keefe, E. S.; Appleton, S.; Perry, C. C. J. Magn. Magn. Mater. 2005, 292, 100. https://doi.org/10.1016/j.jmmm.2004.10.102

Cited by

  1. High temperature sodium batteries: status, challenges and future trends vol.6, pp.3, 2013, https://doi.org/10.1039/c3ee24086j
  2. Role of ionic and nonionic surfactant on the phase formation and morphology of Ba(Ce,Zr)O3 solid solution vol.78, pp.1, 2016, https://doi.org/10.1007/s10971-015-3938-3
  3. Cetyltrimethylammonium Bromide (CTAB) Surfactant-Assisted Synthesis of BiFeO3 Nanoparticles by Sol-Gel Auto-Combustion Method vol.31, pp.10, 2018, https://doi.org/10.1007/s10948-018-4596-9
  4. High and intermediate temperature sodium–sulfur batteries for energy storage: development, challenges and perspectives vol.9, pp.10, 2019, https://doi.org/10.1039/C8RA08658C