DOI QR코드

DOI QR Code

An Electrochemical Enzyme Immunochip Based on Capacitance Measurement for the Detection of IgG

  • Yi, Seung-Jae (Multiscale Multiphysics Measurement Laboratory, School of Mechanical Engineering, Pusan National University) ;
  • Choi, Ji-Hye (Institute of BioPhysio Sensor Technology, Pusan National University) ;
  • Kim, Hwa-Jung (Department of Microbiology and Research Institute for Medical Science, College of Medicine, Chungnam National University) ;
  • Chang, Seung-Cheol (Institute of BioPhysio Sensor Technology, Pusan National University) ;
  • Park, Deog-Su (Institute of BioPhysio Sensor Technology, Pusan National University) ;
  • Kim, Kyung-Chun (Multiscale Multiphysics Measurement Laboratory, School of Mechanical Engineering, Pusan National University) ;
  • Chang, Chulhun L. (Department of Laboratory Medicine, School of Medicine, and Medical Research Institute, Pusan National University)
  • Received : 2011.02.10
  • Accepted : 2011.02.21
  • Published : 2011.04.20

Abstract

This study describes the development of an electrochemical array immunochip for the detection of IgG. Interdigitated immunochip platforms were fabricated by sputtering gold on a glass wafer by using MEMS process and then were coated with Eudragit S100, an enteric polymer, forming an insulating layer over the working area of immunochips. The breakdown of the polymer layer was exemplified by the catalytic action of urease which, in the presence of urea, caused an alkaline pH change. This subsequently caused an increase of the double layer capacitance of the underlying electrode. Used in conjunction with a competitive immunoassay format, this allowed the ratio of initial to final electrode capacitance to be directly linked with the concentration of analyte, i.e. IgG. Responses to IgG could be detected at IgG concentration as low as $250\;ngmL^{-1}$ and showed good linearity up to IgG concentration as high as $20\;{\mu}gmL^{-1}$.

Keywords

References

  1. Cortina, M.; Esplandiu, M. J.; Alegret, S.; del Valle, M.; Group, S. B. Sensor. Actuat. B-Chem. 2006, 118, 84. https://doi.org/10.1016/j.snb.2006.04.062
  2. Tamilselvi, S.; Murugaraj, R.; Rajendran, N. Mater. Corros. 2007, 58, 113. https://doi.org/10.1002/maco.200603979
  3. Mansfeld, F.; Liu, G.; Xiao, H.; Tsai, C. H.; Little, B. J. Corros. Sci. 1994, 36, 2063. https://doi.org/10.1016/0010-938X(94)90008-6
  4. Xiao, H.; Mansfeld, F. J. Electrochem. Soc. 1994, 141, 2332. https://doi.org/10.1149/1.2055121
  5. Tamilselvi, S.; Murugaraj, R.; Rajendran, N. Mater. Corros. 2007,58, 113. https://doi.org/10.1002/maco.200603979
  6. Macdonald, D.; Sun, A. Electrochim. Acta 2006, 51, 1767. https://doi.org/10.1016/j.electacta.2005.02.103
  7. Berggren, C.; Johansson, G. Anal. Chem. 1997, 69, 3651. https://doi.org/10.1021/ac970203e
  8. Laczka, O.; Baldrich, E.; Xavier, F.; Muñoz, F.; del Campo, F. Anal. Chem. 2008, 80, 7239. https://doi.org/10.1021/ac800643k
  9. de Vasconcelos, E.; Peres, N.; Pereira, C. O.; da Silva, V. Biosens. Bioelectro. 2009, 25, 870. https://doi.org/10.1016/j.bios.2009.08.050
  10. Chen, C.; Chang, K.; Chen, Y.; Lee, C.; Lee, B.; Lee, A. Biosens. Bioelectro. 2011, 26, 3072. https://doi.org/10.1016/j.bios.2010.11.051
  11. Ho, W. O.; Krause, S.; McNeil, C. J.; Pritchard, J. A.; Armstrong, R. D.; Athey, D.; Rawson, K. Anal. Chem. 1999, 71, 1940. https://doi.org/10.1021/ac981367d
  12. Mcneil, C. J.; Athey, D.; Ball, M.; Ho, W. O.; Krause, S.; Armstrong,R. D.; Wright, J. D.; Rawson, K. Anal. Chem. 1995, 67, 3928. https://doi.org/10.1021/ac00117a018
  13. Fernandez, C.; McNeil, C. J.; Rawson, K. Trac.-Trend. Anal. Chem.2005, 24, 37. https://doi.org/10.1016/j.trac.2004.08.010
  14. Fernandez, C.; McNeil, C. J.; Rawson, K.; Nilsson, O. Anal. Chem.2004, 76, 5649. https://doi.org/10.1021/ac0494937
  15. Fernandez, C.; McNeil, C. J.; Rawson, K.; Nilsson, O.; Leung, H.Y.; Gnanapragasam, V. J. Immunol. Methods 2005, 307, 1. https://doi.org/10.1016/j.jim.2005.08.014
  16. Siepmanna, F.; Siepmanna, J.; Waltherb, M.; MacRaeb, R.; Bodmeier, R. J. Controlled Release 2008, 125, 1. https://doi.org/10.1016/j.jconrel.2007.09.012
  17. El-Kamel, A. H.; Sokar, M. S.; Al Gamal, S. S.; Naggar, V. F. Int. J. Pharm. 2001, 220, 13. https://doi.org/10.1016/S0378-5173(01)00574-9
  18. Nguyen, D. A.; Fogler, H. S. Aiche. J. 2005, 51, 415. https://doi.org/10.1002/aic.10329
  19. Chen, H.; Lee, J.; Jo, W.-S.; Jeong, M.-H.; Koh, K. Microchim. Acta 2011, 172, 171. https://doi.org/10.1007/s00604-010-0476-0
  20. Kaltwasser, H.; Schlegel, H. G. Anal. Biochem. 1966, 16, 132 https://doi.org/10.1016/0003-2697(66)90088-1
  21. Meyerhoff, M. E.; Rechnitz, G. A. Anal. Biochem. 1979, 95, 483, https://doi.org/10.1016/0003-2697(79)90760-7
  22. Macdonald, J. R. Annals of Biomedical Engineer. 1992, 20, 289. https://doi.org/10.1007/BF02368532
  23. Chang, B. Y.; Park, S. M. Annu. Rev. Anal. Chem. 2010, 3, 207. https://doi.org/10.1146/annurev.anchem.012809.102211
  24. Koh, W.; Choe, E.; Lee, D.; Chang, S.; Shim, Y. Biosens. Bioelectro. 2009, 25, 211. https://doi.org/10.1016/j.bios.2009.06.039
  25. Koncki, R.; Kopczewska, E.; Glab, S. Anal. Lett. 1994, 27, 475. https://doi.org/10.1080/00032719408001088
  26. Walcerz, I.; Koncki, R.; Leszczynska, E.; Salamonowicz, B.; Glab, S. Anal. Lett. 1996, 29, 1939. https://doi.org/10.1080/00032719608000800
  27. Kwon, S. J.; Seo, M.; Yang, H.; Kim, S. Y.; Kwak, J. B. Korean Chem. Soc. 2010, 31, 3103. https://doi.org/10.5012/bkcs.2010.31.11.3103
  28. Hansen, R. J.; Balthasar, J. P. J. Pharmaceut. Biomed. 1999, 21, 1011. https://doi.org/10.1016/S0731-7085(99)00227-7

Cited by

  1. Design and validation of a uniform flow microreactor vol.28, pp.1, 2014, https://doi.org/10.1007/s12206-013-0954-5
  2. 일회용 스트립형 효소면역센서용 플랫폼의 개발 vol.20, pp.6, 2011, https://doi.org/10.5369/jsst.2011.20.6.400