DOI QR코드

DOI QR Code

Cellular Uptake Properties of the Complex Derived from Quantum Dots and G8 Molecular Transporter

  • Im, Jung-Kyun (Department of Chemistry, Pohang University of Science and Technology) ;
  • Maiti, Kaustabh K. (Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Wan-Il (Department of Life Science, Pohang University of Science and Technology) ;
  • Kim, Kyong-Tai (Department of Life Science, Pohang University of Science and Technology) ;
  • Chung, Sung-Kee (Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2011.01.28
  • Accepted : 2011.02.21
  • Published : 2011.04.20

Abstract

The biotin-attached G8 molecular transporter (5) was synthesized and used together with quantum dots in preparing the complexes (QD-MT). The QD-MT complexes were studied in terms of the cellular uptake and the internalization mechanism in live HeLa cells with the aid of various known endocytosis inhibitors. It has been concluded that the QD-MT complex is internalized largely by macropinocytosis. The mouse tissue distribution of the QD-MT complex by i.p. and i.v. routes showed some organ selectivity and a good ability to cross the BBB.

Keywords

References

  1. Parak, W. J.; Pellegrino, T.; Plank, C. Nanotechnology 2005, 16, R9. https://doi.org/10.1088/0957-4484/16/2/R01
  2. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nat. Biotechnol. 2003, 21, 47. https://doi.org/10.1038/nbt767
  3. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435. https://doi.org/10.1038/nmat1390
  4. Giepmans, B. N. G.; Deerinck, T. J.; Smarr, B. L.; Jones, Y. Z.; Ellisman, M. H. Nat. Methods, 2005, 2, 743. https://doi.org/10.1038/nmeth791
  5. Nisman, R.; Dellaire, G.; Ren, Y.; Li, R.; Bazett-Jones, D. P. J. Histochem. Cytochem. 2004, 52, 13. https://doi.org/10.1177/002215540405200102
  6. Dahan, M.; Levi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A. Science 2003, 302, 442. https://doi.org/10.1126/science.1088525
  7. Courty, S.; Luccardini, C.; Bellaiche, Y.; Cappello, G.; Dahan, M. Nano Lett. 2006, 6, 1491. https://doi.org/10.1021/nl060921t
  8. Smith, A. M.; Daun, H.; Mohs, A. M.; Nie, S. Adv. Drug Delivery Rev. 2008, 60, 1226. https://doi.org/10.1016/j.addr.2008.03.015
  9. Derfus, A. M.; Chan, W. C.; Bhatia, S. N. Adv. Mater. 2004, 16, 961. https://doi.org/10.1002/adma.200306111
  10. Tsong, T. Y. Biophys. J. 1991, 60, 297. https://doi.org/10.1016/S0006-3495(91)82054-9
  11. Medintz, I. L.; Pons, T.; Delehanty, J. B.; Susumu, K.; Brunel, F. M.; Dawson, P. E.; Mattoussi, H. Bioconjugate Chem. 2008, 19, 1785. https://doi.org/10.1021/bc800089r
  12. Yum, K.; Na, S.; Xiang, Y.; Wang, N.; Yu, M. F. Nano Lett. 2009, 9, 2193. https://doi.org/10.1021/nl901047u
  13. Voura, E. B.; Jaiswal, J. K.; Mattoussi, H.; Simon, S. M. Nat. Med. 2004, 10, 993. https://doi.org/10.1038/nm1096
  14. Walther, C.; Meyer, K.; Rennert, R.; Neundor, I. Bioconjugate Chem. 2008, 19, 2346. https://doi.org/10.1021/bc800172q
  15. Chen, F.; Gerion, D. Nano Lett. 2004, 4, 1827. https://doi.org/10.1021/nl049170q
  16. Rozenzhak, S. M.; Kadakia, M. P.; Caserta, T. M.; Westbrook, T. R.; Stone, M. O.; Naik, R. R. Chem. Commun. 2005, 2217.
  17. Zhelev, Z.; Ohba, H.; Bakalova, R.; Jose, R.; Fukuoka, S.; Nagase, T.; Ishikawa, M.; Baba, Y. Chem. Commun. 2005, 1980.
  18. Liu, B. R.; Li, J. F.; Lu, S. W.; Lee, H. J.; Huang, Y. W.; Shannon, K. B.; Aronstam, R. S. J. Nanosci. Nanotechnol. 2010, 10, 6534. https://doi.org/10.1166/jnn.2010.2637
  19. Ruan, G.; Agrawal, A.; Marcus, A. I.; Nie, S. J. Am. Chem. Soc. 2007, 129, 14759. https://doi.org/10.1021/ja074936k
  20. Chen, B.; Liu, Q.; Zhang, Y.; Xu, L.; Fang, X. Langmuir 2008, 24, 11866. https://doi.org/10.1021/la802048s
  21. Conner, S. D.; Schmid, S. L. Nature 2003, 422, 37. https://doi.org/10.1038/nature01451
  22. Schutze, S.; Tchikov, V.; Schneider-Brachert, W. Nat. Rev. Mol. Cell Biol. 2008, 9, 655. https://doi.org/10.1038/nrm2430
  23. Jones, A. T. J. Cell. Mol. Med. 2007, 11, 670. https://doi.org/10.1111/j.1582-4934.2007.00062.x
  24. Mercer, J.; Helenius, A. Nat. Cell Biol. 2009, 11, 510. https://doi.org/10.1038/ncb0509-510
  25. Schmid, S. L. Annu. Rev. Biochem. 1997, 66, 511. https://doi.org/10.1146/annurev.biochem.66.1.511
  26. Brodsky, F. M.; Chen, C.-Y.; Kneuhl, C.; Towler, M. C.; Wakeham, D. E. Annu. Rev. Cell Dev. Biol. 2001, 17, 517. https://doi.org/10.1146/annurev.cellbio.17.1.517
  27. Puri, V.; Watanabe, R.; Singh, R. D.; Dominguez, M.; Brown, J. C.; Wheatley, C. L.; Marks, D. L.; Pagano, R. E. J. Cell Biol. 2001, 154, 535. https://doi.org/10.1083/jcb.200102084
  28. Nichols, B. J.; Lippincott-Schwartz Trends Cell Biol. 2001, 11, 406. https://doi.org/10.1016/S0962-8924(01)02107-9
  29. Maiti, K. K.; Lee, W. S.; Takeuchi, T.; Watkins, C.; Fretz, M.; Kim, D. C.; Futaki, S.; Jones, A.; Kim, K.-T.; Chung, S. K. Angew. Chem. Int. Ed. 2007, 46, 5880. https://doi.org/10.1002/anie.200701346
  30. Chung, S. K.; Maiti, K. K.; Lee, W. S. Int. J. Pharm. 2008, 354, 16. https://doi.org/10.1016/j.ijpharm.2007.08.016
  31. Im, J.; Kim, W.; Kim, K. T.; Chung, S. K. Chem. Commun. 2009, 4649.
  32. Im, J.; Biswas, G.; Kim, W.; Kim, K.-T.; Chung, S. K. Bull. Korean Chem. Soc. 2011, in press.
  33. Jin., J.; Lee, W. S.; Joo, K. M.; Maiti, K. K.; Biswas, G.; Kim, W.; Kim, K.-T.; Lee, S. J.; Kim, K.-H.; Nam, D.-H.; Chung, S. K. Med. Chem. Commun. 2011. DOI 10.1039/comd00235f
  34. Kam, N. W. S.; Liu, Z.; Dai, H. Angew, Chem. Int. Ed. 2005, 44, 1. https://doi.org/10.1002/anie.200590000
  35. Richard, J. P.; Melikov, K.; Brooks, H.; Prevot, P.; Lebleu, B.; Chernomordik, L. V. J. Biol. Chem. 2005, 280, 15300. https://doi.org/10.1074/jbc.M401604200
  36. Gao, X.; Wang, T.; Wu, B.; Chen, J.; Chen, J.; Yue, Y.; Dai, N.; Chen, X.; Jiang, X. Biochem. Biophys. Res. Commun. 2008, 377, 35. https://doi.org/10.1016/j.bbrc.2008.09.077
  37. Mo, Y.; Lim, L. Y. J. Pharm. Sci. 2004, 93, 20. https://doi.org/10.1002/jps.10507
  38. Wadia, J. S.; Stan, R. V.; Dowdy, S. F. Nat. Med. 2004, 10, 310. https://doi.org/10.1038/nm996
  39. Zhang, L. W.; Monteiro-Riviere, N. A. Toxicol. Sci. 2009, 110, 138. https://doi.org/10.1093/toxsci/kfp087
  40. Battah, S.; Balaratnam, S; Casas, A; O'Neill, S; Edwards, C; Batlle, A; Dobbin, P.; MacRobert, A. J. Mol. Cancer Ther. 2007, 6, 876. https://doi.org/10.1158/1535-7163.MCT-06-0359
  41. Bellette, B. M.; Woods, G. M.; Wozniak, T.; Doherty, K. V.; Muller, H. K. Immunology 2003, 110, 466. https://doi.org/10.1111/j.1365-2567.2003.01759.x
  42. Santra, S.; Yang, H.; Stanley, J. T.; Holloway, P. H.; Moudgil, G. W.; Mericle, R. A. Chem. Commun. 2005, 3144.

Cited by

  1. Sensitive pH probes of retro-self-quenching fluorescent nanoparticles vol.1, pp.18, 2013, https://doi.org/10.1039/c3tb20146e
  2. On Guanidinium and Cellular Uptake vol.79, pp.15, 2014, https://doi.org/10.1021/jo501101s
  3. Synthesis of Ibuprofen Conjugated Molecular Transporter Capable of Enhanced Brain Penetration vol.2017, pp.2090-9071, 2017, https://doi.org/10.1155/2017/4746158
  4. up-converting nanoparticles into HeLa cells vol.24, pp.23, 2013, https://doi.org/10.1088/0957-4484/24/23/235702
  5. pp.12295949, 2018, https://doi.org/10.1002/bkcs.11611
  6. Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection vol.8, pp.None, 2011, https://doi.org/10.2147/ijn.s39658
  7. Ultrasonically controlled albumin-conjugated liposomes for breast cancer therapy vol.47, pp.1, 2011, https://doi.org/10.1080/21691401.2019.1573175