DOI QR코드

DOI QR Code

Preparation and Characterization of Core/Shell-type Ag/Chitosan Nanoparticles with Antibacterial Activity

  • Lin, Yue (State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University) ;
  • Jing, Wang (State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University) ;
  • Kang, Pan (State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University) ;
  • Xiaoming, Zhang (State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University) ;
  • Zhouping, Wang (State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University) ;
  • Wenshui, Xia (State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University)
  • Received : 2010.12.14
  • Accepted : 2011.02.15
  • Published : 2011.04.20

Abstract

Making use of chitosan (CS) and ethylenediaminetetraacetic acid (EDTA) as a reaction system, CS-EDTA nanoparticles were synthesized through a facile counterion complex coacervation method. $Ag^+$ could enter porous CS nanoparticles synthesized with this method, allowing Ag nanoparticles within chitosan nanoparticles were synthesized by reducing silver nitrate with chitosan. Because of the noncovalent interaction between CS and EDTA, the EDTA could be easily removed via dialysis against water, and pure core/shell-type Ag/CS nanoparticles could be obtained. The nanoparticles showed higher antibacterial activity toward E. coli than the active precursor Ag nanoparticles and CS.

Keywords

References

  1. Chien, P. J.; Seu, F.; Yang, F. H. Journal of Food Engineering 2007, 78, 225. https://doi.org/10.1016/j.jfoodeng.2005.09.022
  2. Holt, K. B.; Bard, A. J. Biochemistry 2005, 44, 13214. https://doi.org/10.1021/bi0508542
  3. Lok, C. N.; Ho, C. M.; Chen, R.; He, Q. Y.; Yu, W. Y.; Sun, H. Z.et al. Journal of Proteome Research 2006, 5, 916. https://doi.org/10.1021/pr0504079
  4. Butkus, M. A.; Edling, L.; Labare, M. P. Journal of Water Supply: Research and Technology - Aqua 2003, 52, 407.
  5. Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O.Journal of Biomedical Materials Research 2000, 52, 662. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  6. Panacek, A.; Kvitek, L.; Prucek, R.; Kolar, M.; Vecerova, R.;Pizurova, N. et al. The Journal of Physical Chemistry B 2006,110, 16248. https://doi.org/10.1021/jp063826h
  7. Baker, C.; Pradhan, A.; Pakstis, L.; Pochan, D. J.; Shah, S. I. Journal of Nanoscience and Nanotechnology 2005, 5, 244. https://doi.org/10.1166/jnn.2005.034
  8. Cho, K. H.; Park, J. E.; Osaka, T.; Park, S. G. Electrochim Acta2005, 51, 956. https://doi.org/10.1016/j.electacta.2005.04.071
  9. Sondi, I.; Salopek-Sondi, B. Journal of Colloid and Interface Science 2004, 275, 177. https://doi.org/10.1016/j.jcis.2004.02.012
  10. Kim, J. S. K.; Kuk, E.; Yu, K. N.; Kim, J. H.; Park, S. J.; Lee, H. J.et al. Nanomedicine: Nanotechnology, Biology and Medicine2007, 3, 95. https://doi.org/10.1016/j.nano.2006.12.001
  11. Pal, S.; Tak, Y. K.; Song, J. M. Applied and Environmental Microbiology2007, 73, 1712. https://doi.org/10.1128/AEM.02218-06
  12. Du, W. L.; Niu, S. S.; Xu, Y. L.; Xu, Z. R.; Fan, C. L. Carbohydrate Polymers 2009, 75, 385. https://doi.org/10.1016/j.carbpol.2008.07.039
  13. Sanpui, P.; Murugadoss, A.; Prasad, P. V. D.; Ghosh, S. S.; Chattopadhyay, A. International Journal of Food Microbiology 2008, 124, 142. https://doi.org/10.1016/j.ijfoodmicro.2008.03.004
  14. Cao, X. L.; Cheng, C.; Ma, Y. L.; Zhao, C. S. J. Mater Sci.: Mater Med. 2010, 21, 2861. https://doi.org/10.1007/s10856-010-4133-2
  15. Wei, D. W.; Sun, W. Y.; Qian, W. P.; Ye, Y. Z.; Ma, X. Y. Carbohydrate Research 2009, 344, 2375. https://doi.org/10.1016/j.carres.2009.09.001
  16. Banerjee, M.; Mallick, S.; Paul, A.; Chattopadhyay, A.; Ghosh, S.S. Langmuir 2010, 26, 5901. https://doi.org/10.1021/la9038528
  17. Twu, Y. K.; Chen, Y. W.; Shih, C. M. Powder Technology 2008,185, 251. https://doi.org/10.1016/j.powtec.2007.10.025
  18. Murugadoss, A.; Chattopadhyay, A. Nanotechnology 2008, 19, 015603. https://doi.org/10.1088/0957-4484/19/01/015603
  19. Empleton, A.C.; Pietron, J. J.; Murray, R. W.; Mulvaney, P. The Journal of Physical Chemistry B 2000, 104, 564. https://doi.org/10.1021/jp991889c
  20. Dutoit, D. C. M.; Schmeider, M.; Baiker, A. Journal of Catalysis 1995, 153, 165. https://doi.org/10.1006/jcat.1995.1118
  21. Rubio, J.; Oteo, J. L.; Villegas, M.; Duran, P. Journal of Materials Science 1997, 32, 643. https://doi.org/10.1023/A:1018579500691
  22. Guo, R.; Zhang, L.; Zhu, Z.; Jiang, X. Langmuir 2008, 24, 459.
  23. Wei, D. W.; Qian, W. P. Colloids and Surfaces B-Biointerfaces2008, 62, 136. https://doi.org/10.1016/j.colsurfb.2007.09.030
  24. Bodnar, M.; Hartmann, J. F.; Borbely, J. Biomacromolecules2005, 6, 2521. https://doi.org/10.1021/bm0502258
  25. Yu, S. Y.; Hu, J. H.; Pan, X. Y.; Yao, P.; Jiang, M. Langmuir 2006,22, 2754. https://doi.org/10.1021/la053158b
  26. Ye, W. J.; Leung, M. F.; Xin, J.; Kwong, T. L.; Lee, D. K. L.; Li, P.Polymer 2005, 46, 10538. https://doi.org/10.1016/j.polymer.2005.08.019
  27. Sambhy, V.; MacBride, M. M.; Peterson, B. R.; Sen, A. Journal of the American Chemical Society 2006, 128, 9798. https://doi.org/10.1021/ja061442z

Cited by

  1. Hematotoxicological analysis of surface-modified and -unmodified chitosan nanoparticles vol.101, pp.10, 2013, https://doi.org/10.1002/jbm.a.34591
  2. Catalytic and SERS Activities of Tryptophan-EDTA Capped Silver Nanoparticles vol.640, pp.6, 2014, https://doi.org/10.1002/zaac.201400056
  3. Organic Nanoparticles in Foods: Fabrication, Characterization, and Utilization vol.7, pp.1, 2016, https://doi.org/10.1146/annurev-food-041715-033215
  4. Functionality, antibacterial efficiency and biocompatibility of nanosilver/chitosan/silk/phosphate scaffolds 1. Synthesis and optimization of nanosilver/chitosan matrices through gamma rays irradiatio vol.1, pp.3, 2011, https://doi.org/10.1088/2053-1591/1/3/035024
  5. Spectroscopic characterization of the effect of gamma radiation on the physical parameters of biosynthesized silver/chitosan nano-particles and their antimicrobial activity vol.2, pp.9, 2011, https://doi.org/10.1088/2053-1591/2/9/095023
  6. Spectroscopic characterization of the effect of gamma radiation on the physical parameters of biosynthesized silver/chitosan nano-particles and their antimicrobial activity vol.2, pp.9, 2011, https://doi.org/10.1088/2053-1591/2/9/095023
  7. Kinetic insights on wet peroxide oxidation of caffeine using EDTA-functionalized low-cost catalysts prepared from compost generated in municipal solid waste treatment facilities vol.24, pp.None, 2021, https://doi.org/10.1016/j.eti.2021.101984