DOI QR코드

DOI QR Code

3D-QSAR Analysis and Molecular Docking of Thiosemicarbazone Analogues as a Potent Tyrosinase Inhibitor

  • Park, Joon-Ho (Department of Biology, Queen's University Kingston) ;
  • Sung, Nack-Do (Department of Applied Biological and Chemistry, College of Agriculture & Life Science, Chungnam National University)
  • Received : 2010.10.08
  • Accepted : 2011.02.14
  • Published : 2011.04.20

Abstract

Three dimensional quantitative structure-activity relationships (3D-QSARs) between new thiosemicarbazone analogues (1-31) as a substrate molecule and their inhibitory activity against tyrosinase as a receptor were performed and discussed quantitatively using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) methods. According to the optimized CoMSIA 2 model obtained from the above procedure, inhibitory activities were mainly dependent upon H-bond acceptor favored field (36.5%) of substrate molecules. The optimized CoMSIA 2 model, with the sensitivity of the perturbation and the prediction, produced by a progressive scrambling analysis was not dependent on chance correlation. From molecular docking studies, it is supposed that the inhibitory activation of the substrate molecules against tyrosinase (PDB code: 1WX2) would not take place via uncompetitive inhibition forming a chelate between copper atoms in the active site of tyrosinase and thiosemicarbazone moieties of the substrate molecules, but via competitive inhibition based on H-bonding.

Keywords

References

  1. Chase, M. R.; Raina, K.; Bruno, J.; Sugumaran, M. Insect. Biochem. Molec. 2000, 30, 953. https://doi.org/10.1016/S0965-1748(00)00068-0
  2. Chen, Q. X.; Liu, X. D.; Huang, H. Biochemistry-Moscow 2003, 68, 644. https://doi.org/10.1023/A:1024665709631
  3. Olivares, C.; Cervantes, C. J.; Lozano, J. A.; Solano, F.; Garcia-Borron, J. C. Biochem. J. 2001, 354, 131. https://doi.org/10.1042/0264-6021:3540131
  4. Sptitz, R. A.; Hearing, V. J., Jr. Adv. Hum. Genet. 1994, 22, 1.
  5. Martinez, M. V.; Whitaker, J. R. Trends Food Sci. Technol. 1995, 6, 195. https://doi.org/10.1016/S0924-2244(00)89054-8
  6. Matoba, Y.; Kumagai, T.; Yamamoto, A.; Yoshitsu, H.; Sugiyama, M. J. Biol. Chem. 2006, 281, 8981. https://doi.org/10.1074/jbc.M509785200
  7. Jackman, M. O.; Hajnal, A.; Lerch, K. Biochem. J. 1991, 274, 707.
  8. Kim, Y. J.; Uyama, H. Cell. Mol. Life Sci. 2005, 62, 1707. https://doi.org/10.1007/s00018-005-5054-y
  9. Wilcox, D. E.; Porras, A. G.; Hwang, Y. T.; Lerch, K.; Winkler, M. E.; Solomon, E. I. J. Am. Chem. Soc. 1985, 107, 4015. https://doi.org/10.1021/ja00299a043
  10. Sanjust, E.; Cecchini, G.; Sollai, F.; Curreli, N.; Mescigno, A. Arch. Biochem. Biophys. 2003, 412, 272. https://doi.org/10.1016/S0003-9861(03)00053-5
  11. Khan, K. M.; Maharvi, G. M.; Khan, M. T. H.; Shaikh, A. J.; Perveen, S.; Begaum, S.; Choudhary, M. I. Bioorg. Med. Chem. 2006, 14, 344. https://doi.org/10.1016/j.bmc.2005.08.029
  12. Parvez, S.; Kang, M.; Chung, H. S.; Bae, H. Phytother. Res. 2007, 21, 805. https://doi.org/10.1002/ptr.2184
  13. Khan, M. T. H. Pure Appl. Chem. 2007, 79, 2277. https://doi.org/10.1351/pac200779122277
  14. Khan, M. T. H. Topics Heterocyclic Chem. 2007, 9, 119. https://doi.org/10.1007/7081_2007_077
  15. Xue, C. B.; Zhang, L.; Luo, W. C.; Xie, X. Y.; Jiang, L.; Xiao, T. Bioorg. Med. Chem. 2007, 15, 2006. https://doi.org/10.1016/j.bmc.2006.12.038
  16. Pasha, F. A.; Muddassar, M.; Beg, Y.; Cho, S. J. Chem. Biol. Drug. Des. 2008, 71, 483. https://doi.org/10.1111/j.1747-0285.2008.00651.x
  17. Yi, W.; Cao, R. H.; Chen, Z. Y.; Yu, L.; Ma, L.; Song, H. C. Chem. Pharm. Bull. 2009, 57, 1273. https://doi.org/10.1248/cpb.57.1273
  18. Liu, J.; Yi, W.; Wan, Y.; Ma, L.; Song, H. Bioorg. Med. Chem. 2008, 16, 1096. https://doi.org/10.1016/j.bmc.2007.10.102
  19. Yi, W.; Cao, R.; Chen, Z.; Yu, L.; Wen, H.; Yan, Q.; Ma, L.; Song, H. Chem. Pharm. Bull. 2010, 58, 752. https://doi.org/10.1248/cpb.58.752
  20. Xue, C. B.; Luo, W. C.; Ding, Q.; Liu, S. Z.; Gao, X. X. J. Comput. Aided Mol. Des. 2008, 22, 290.
  21. Chung, S. W.; Ha, Y. M.; Kim, Y. J.; Song, S.; Lee, H.; Suh, H.; Chung, H. Y. Arch. Pharm. Res. 2009, 32, 289. https://doi.org/10.1007/s12272-009-1235-9
  22. Chen, Y. R.; Chiou, R. Y.; Lin, T. Y.; Huang, C. P.; Tang, W. C.; Chen, S. T.; Lin, S. B. J. Agri. Food Chem. 2009, 57, 2200. https://doi.org/10.1021/jf802617a
  23. Sung, J. H.; Park, S. H.; Seo, D. H.; Lee, J. H.; Hong, S. W.; Hong, S. S. Biosci. Biotechol. Biochem. 2009, 73, 552. https://doi.org/10.1271/bbb.80601
  24. Sung, N. D.; Jung, H. S.; Kim, S. J. J. Soc. Cosmet. Scientists Korea 2004, 30, 491.
  25. Sung, N. D.; Chung, Y. H.; Jang, S. C.; Kim, S. J. J. Appl. Biol. Chem. 2007, 50, 52.
  26. Kim, S. J.; Kim, S. G.; Sung, N. D. J. Soc. Cosmet. Scientists Korea 2008, 34, 109.
  27. Akamatsu, M. Curr. Topics Med. Chem. 2002, 2, 1381. https://doi.org/10.2174/1568026023392887
  28. Cramer, R. D., III.; Patterson, D. E.; Bunce, J. E. J. Am. Chem. Soc. 1988, 110, 5959. https://doi.org/10.1021/ja00226a005
  29. Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 4130. https://doi.org/10.1021/jm00050a010
  30. Tripos Inc., Sybyl molecular modeling and QSAR software on CD-Rom, (Ver.8.1.1) Theory and manual., St. Louis, Missouri. 2008.
  31. Soung, M. G.; Kim, J. H.; Kwon, B. M.; Sung, N. D. Bull. Korean Chem. Soc. 2010, 31, 1335.
  32. Soung, M. G.; Park, K. Y.; Sung, N. D. Bull. Korean Chem. Soc. 2010, 31, 1469. https://doi.org/10.5012/bkcs.2010.31.6.1469
  33. Soung, M. G.; Kil, M. J.; Sung, N. D. Bull. Korean Chem. Soc. 2009, 30, 2749. https://doi.org/10.5012/bkcs.2009.30.11.2749
  34. Kerr, R. Biophys. J. 1994, 67, 1501. https://doi.org/10.1016/S0006-3495(94)80624-1
  35. Cramer, R. D.; Bunce, J. D.; Patterson, D. E. Quant. Struct. Act. Relat. 1988, 7, 18. https://doi.org/10.1002/qsar.19880070105
  36. Clark, R. D.; Fox, P. C. J. Comput. -Aided. Mol. Des. 2004, 18, 563. https://doi.org/10.1007/s10822-004-4077-z
  37. Quian, L.; Brian, M.; Karl, S.; Julian, S. J. Med. Chem. 2007, 50, 5392. https://doi.org/10.1021/jm070750k
  38. Jain, A. N. J. Med. Chem. 2003, 46, 499. https://doi.org/10.1021/jm020406h
  39. Patrick, A. H.; Jonathan, B. C.; John, O. T. J. Chem. Inf. Model. 2008, 48, 1602. https://doi.org/10.1021/ci800063v
  40. Jain, A. N. J. Comp. -Aided Mole. Des. 1996, 10, 427. https://doi.org/10.1007/BF00124474
  41. Clark, R. D.; Fox, P. C. J. Comput. -Aided. Mol. Des. 2003, 17, 1. https://doi.org/10.1023/A:1024562326498
  42. Clark, R. D.; Sprous, D. G.; Leonard, J. M. Validating Models Based on Large Data Sets; Prous Science: Barcelona, 2001; p 475.
  43. Kahn, V., Ben-Shalom, N.; Zakin, V. J. Agric. Food Chem. 1997, 45, 4460. https://doi.org/10.1021/jf9702858
  44. Briganti, S.; Camera, E.; Picardo, M. Pigment. Cell. Res. 2003, 16, 101. https://doi.org/10.1034/j.1600-0749.2003.00029.x
  45. Smith, C. M.; Hotchkiss, S. A. M. Allergic Contact Dermatitis: Chemical and Metabolic Mechanisms; Taylor and Francis: London, 2001.
  46. Jowsey, I. R; Basketter, D. A.; Westmoreland, C.; Kimber, I. A. J. Appl. Toxicol. 2006, 6, 341.
  47. Natsch, A.; Wmter, R.; Ellis, G. Toxicol. Sci. 2009, 107, 106.
  48. Himmelwright, R. S.; Eickman, N. C.; Lubein, C. D.; Solomon E. I.; Lerch, K. J. Am. Chem. Soc. 1980, 102, 2563.
  49. Kim, Y. J.; Chung, J. E.; Kurisawa, M.; Uyama, H.; Kobayashi, S. Biomacromol. 2004, 5, 474. https://doi.org/10.1021/bm034320x

Cited by

  1. Synthesis and Anti-HIV Activity of Aryl-2-[(4-cyanophenyl)amino]-4-pyrimidinone hydrazones as Potent Non-nucleoside Reverse Transcriptase Inhibitors vol.6, pp.12, 2011, https://doi.org/10.1002/cmdc.201100334
  2. Synthesis and Antityrosinase Mechanism of Benzaldehyde Thiosemicarbazones: Novel Tyrosinase Inhibitors vol.60, pp.6, 2012, https://doi.org/10.1021/jf204420x
  3. Lysyl Hydroxylase의 저해활성을 증가시키기 위한 Minoxidil 유도체들의 구조적인 요건 vol.27, pp.2, 2011, https://doi.org/10.7841/ksbbj.2012.27.2.121
  4. Molecular features related to the binding mode of PPARδ agonists from QSAR and docking analyses vol.24, pp.2, 2011, https://doi.org/10.1080/1062936x.2012.751453