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In this study, we have developed a ligand-based in-silico prediction model to classify chemical structures into

hERG blockers using Bayesian and random forest modeling methods. These models were built based on patch

clamp experimental results. The findings presented in this work indicate that Laplacian-modified naïve

Bayesian classification with diverse selection is useful for predicting hERG inhibitors when a large data set is

not obtained.
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Introduction

The human ether-a-go-go related gene (hERG) channel is

a key cardiac ion channel that is crucial for the regulation of

cardiac action potential.1 Blockage of this potassium channel

extends the repolarization phase, leading to a prolonged QT

interval, which is now well understood as the root cause of

the cardio-toxicity of numerous approved drugs.2 Therefore,

the hERG channel is a general anti-target in the pharma-

ceutical industry, and the prediction of hERG activity of new

drug candidates has become increasingly important in drug

discovery and development. The typical high-throughput

hERG screening comprises a radioligand binding assay, a

patch clamp assay, a cell-based fluorescence assay, and a

rubidium efflux assay.3 However, the highest throughput

methods are too expensive, technically demanding, labor-

intensive, and time consuming for the treatment of ever

increasing hit compounds in early-stage drug discovery

projects. Therefore, in efforts to find a more economic and

reliable approach and circumvent these problems, a number

of computational methods have been explored for the

prioritization of compounds according to their potential to

cause cardiotoxic side effects. Many computational pre-

diction models4-9 have been reported recently for hERG

channel blockers, and they can be broadly divided into three

categories: structure-based, 3D-QSAR, and classification

models. Most studies on hERG blockade have been perform-

ed based on 2-dimensional ligand structures using classi-

fication-based approaches,10 including naïve Bayesian,11 de-

cision tree,12 random forest,13 and support-vector machines.14-16

Bayes’s rule of conditional probability17 is a widely used

method of statistical inference applied to many real-world

problems that makes it possible to model uncertainty about

the world and outcomes of interest by combining common-

sense knowledge and observational evidence. The random

forest modeling approach is a combinational classifier that

consists of many decision tree predictors and outputs the

class that is the mode of the output of individual trees.18

In this study, we have developed a ligand-based in-silico

prediction model to classify chemical structures into hERG

blockers using Bayesian and random forest modeling methods.

These models were built based on patch clamp experimental

data and were experimentally validated using in-house

compounds. The models described here have comparable

predictive powers to those yielded by the approaches noted

above.

Experimental

Data Sets. The in vitro hERG inhibition data were collect-

ed from the literature, Prous Science Integrity,19 and an in-

house experiment. The compounds measured in Human Em-

bryonic Kidney 293 (HEK293) or Chinese Hamster Ovary

(CHO) cells in a whole-cell patch-clamp assay were collect-

ed with the experimental IC50 or pIC50 (−log IC50) values

from the public domain. The hERG activities of in-house

compounds were also measured by an automated planar

patch clamp (PatchXpress 7000A) and HEK293 cells. To

apply Bayesian11 and random forest classifiers,13 the collect-

ed compounds with IC50 ≥ 10 μM or pIC50(−logIC50) ≤ 5

were assigned to class 0 (weak inhibitors), and the others

were assigned to class 1 (strong inhibitors). We eliminated

compounds reported to have both class 0 and class 1 activity

for a given single compound as outliers. A principal compo-

nent analysis (PCA) and structural clustering were perform-

ed to obtain the overall chemical diversity for all the finally

selected 280 compounds. We used the property descriptors

and functional class fingerprints with a maximum diameter

of 4 (FCFP_4).20 The data was additionally preprocessed by

mean centering and unit-variance scaling. The 89.4% varia-

tion in the data indicates that the PCA gives three significant

PCs. The plots of each data set in the space defined by the

three principle components, PC1-PC2-PC3, are presented in

Figure 1. Finally, we divided the collected data of 258
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compounds among 280 compounds into a learning set (224

compounds) and a validation A set (34 compounds). The

224 compounds of the learning set were further divided into

training and test sets by diverse or random selection. The in-

house data of 22 compounds among the 280 compounds was

assigned to a validation B set for a second evaluation. The

information on the activity classes and the divided sets is

listed in Table 1. 

Classification Methods. Bayesian and random forest

classification models were built from the training set using

the molecular fingerprint and property descriptor sets in

terms of the following: extended class fingerprint with a

maximum diameter 6 (ECFP_6) in Pipeline Pilot 7.5,20

number of rotatable bonds, number of hydrogen bond donors,

number of hydrogen acceptors, AlogP, molecular weight,

molecular fractional polar surface area, molecular fractional

polar solvent-accessible surface area, and molecular solvent-

accessible volume. The 224 compounds of the learning set

were divided into training and test sets with a ratio ranging

from 9/1 to 1/9, and classification models were then con-

structed based on each of the nine training sets. The training

and test sets were generated by simple random selection or

by diverse selection. For the diverse selection of training sets

and test sets, the FCFP_4 fingerprint and property descriptors,

respectively, were used. 

Laplacian-modified naïve Bayesian classification models

were built for each individual training set using the Learn

Good Molecules component in Pipeline Pilot.20 Laplacian-

modified naïve Bayesian classifiers have proven useful in

creating models that can work well even with noisy data.21 

Random forest is essentially a collection of tree predictors,

where each tree depends on the value of a randomly sampled

parameter vector.18 This means that a tree is trained only

with randomly selected samples, which are called in-bag

cases. In addition, a subset of descriptors is considered to be

eligible to be divided at each node. To learn imbalanced

data, the number of each class and the weight of each sample

were set to be equal in 500 trees for the forest model. The

square root of the number of descriptors was used as a

splitting criterion within each tree. 

Results and Discussion

In this study, predictions were carried out using the test set

in the learning set and the validation A and validation B sets.

Figure 2 shows the ability of the Laplacian-modified naïve

Bayesian classification and random forest classification

models to rank compounds according to their probability of

being active, which varies according to the selection method,

and the ratio of training sets to test sets. The area under the

Figure 1. The PCA data plots of 280 hERG compounds for
learning set (Blue), validation A set (Orange), and validation B set
(Red).

Table 1. The number of compounds for data set

Class Learning Validation A Validation B

0 88 16 12

1 136 18 10

Total 224 34 22

Figure 2. The plots of AUC scores for each test and validation sets:
(a) test set, (b) validation A set, and (c) validation B set. The classi-
fication methods are distinguished between Laplacian-modified
naïve Bayesian (black line) and random forest (gray line). The
compound selection method of training sets are given by the line
type: random (dot-dashed), fingerprint diverse (solid), and property
diverse (dashed).
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receiver operating characteristic curve (AUC) scores for

Laplacian-modified naïve Bayesian and random forest classi-

fication are given in Figure 2 for the test, validation A, and

validation B sets. (The ROC plots are shown in supple-

mentary materials.) The AUC provides a simple quality

assessment for a classification model. The closer the AUC

score is to 1.0, the better the model is at distinguishing

samples in the good class from samples in the bad class. As

shown in Figure 2, our results generally indicated that

Laplacian-modified naïve Bayesian classification in combi-

nation with diverse selection by fingerprint or property

descriptors could achieve a better predictive model, although

a large data set was not fulfilled. As for the test set, random

forest classification models showed significantly lower

enhancement, as seen in Figure 2(a). On the other hand, for

validation A set, as shown in Figure 2(b), models built on

ratios from 9/1 to 6/4 of training sets to test sets yielded high

AUC values of more than 0.9. However, as shown in Figure

2(c), for the in-house data set assigned to the validation B

set, Laplacian-modified naïve Bayesian classification in com-

bination with diverse selection by the fingerprint descriptor

achieved better performance than any other models. We also

estimated the predictive performance by various statistics

such as accuracy, sensitivity, and specificity (%) on each of

the test sets in the learning set and validation A and valida-

tion B sets from all learned models by Laplacian-modified

naïve Bayesian classification, as presented in Table 2. As

also can be seen from the ratios ranging from 9/1 to 8/2 in

Table 2, the prediction accuracies for each set of compounds

range from 95.5% to 82.4%, the sensitivities range from

92.6% to 77.8%, and the specificities range from 100.0% to

87.5% for the Laplacian-modified naïve Bayesian classi-

fication with fingerprint diverse selection models.

To identify the important features that contributed to class

0 or class 1, the ECFP_6 descriptors were extracted from

each learned model of which the normalized probability

values are less than −0.70 or more than 0.35. The normalized

probability is the final contribution of the feature to the total

relative estimate. If the value of the normalized probability

is positive, the presence of the feature increases the like-

lihood that the molecule is a member of the ‘class 1’ subset.

On the other hand, if the value of the normalized probability

is negative, it decreases the likelihood that the molecule is a

member of the ‘class 1’ subset. Subsets of the most important

features corresponding to class 0 and class 1 are shown in

Figure 3. These features were selected for a substructure

search of the entire test and validation A and validation B

data sets, and the number of compounds retrieved in each of

these sets are 47, 11, and 13 compounds, respectively. 

Conclusion

In this study, we investigated hERG prediction with various

training sets created by different classification methods. This

work indicates that Laplacian-modified naïve Bayesian classi-

Table 2. The predictive performance obtained from all of the learned models by Laplacian-modified naïve Bayesian classification

Data sets Ratio 9/1 8/2 7/3 6/4 5/5 4/6 3/7 2/8 1/9

Test Accuracy (%) 90.5 95.5 78.8 79.8 75.9 75.9 46.2 61.8 61.7

Sensitivity (%) 84.6 92.6 75.0 79.6 66.2 80.2 11.6 50.9 100.0

Specificity (%) 100.0 100.0 84.6 80.0 90.9 69.2 100.0 78.6 2.5

Validation A Accuracy (%) 85.3 82.4 88.2 88.2 91.2 94.1 61.8 79.4 55.9

Sensitivity (%) 83.3 77.8 77.8 77.8 83.3 88.9 27.8 66.7 100.0

Specificity (%) 87.5 87.5 100.0 100.0 100.0 100.0 100.0 93.8 6.3

Validation B Accuracy (%) 90.9 86.4 86.4 90.9 72.7 90.9 54.5 59.1 45.5

Sensitivity (%) 80.0 80.0 70.0 80.0 40.0 80.0 0.0 10.0 100.0

Specificity (%) 100.0 91.7 100.0 100.0 100.0 100.0 100.0 100.0 0.0

Figure 3. The important features for class 0 (a) and class 1 (b)
which were obtained from each of nine Laplacian-modified naïve
Bayesian classification models and then filtered by normalized
probability and frequency.
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fication with diverse selection is useful for predicting hERG

inhibitors when a large data set is not obtained. Introduction

of a set of fingerprint or property descriptors for diverse

selection also improves the prediction capability of machine

learning methods such as Laplacian-modified naïve Bayesian

and random forest classification.
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