DOI QR코드

DOI QR Code

Helical Compounds Forming Gas-Phase Dimers: A Dispersion-corrected Density Functional Investigation

  • Tongying, Pornthip (National Nanotechnology Center, National Science and Technology Development Agency) ;
  • Sooksimuang, Thanasat (National Metal and Materials Technology Center, National Science and Technology Development Agency) ;
  • Tantirungrotechai, Yuthana (National Nanotechnology Center, National Science and Technology Development Agency)
  • Received : 2010.09.27
  • Accepted : 2011.02.12
  • Published : 2011.04.20

Abstract

Chiral discrimination is the ability to distinguish one enantiomeric form over another. The differential binding interaction between two molecules with the same helicity and those with the opposite helicity was investigated by using dispersion-corrected density functional theory. [5]helicene, tetrahydro[5]helicene and the polar D-${\pi}$-A compounds, 3,12-dimethoxy-7,8-dicyano-[5]helicene and 3,12-dimethoxy-7,8-dicyano-tetrahydro[5]helicene were the monomers considered in this study. In gas phase, the dimeric interaction from two helical molecules with the opposite handedness is greater than from those with the same handedness. The stable configurations of such dimers were identified. The most stable configuration tends to be the one with maximum contact between monomers.

Keywords

References

  1. Lough, W.; Wainer, I. Chirality in Natural and Applied Science, 1st ed.; Blackwell: 2002.
  2. Amouri, H.; Gruselle, M. Chirality in Transition Metal Chemistry: Molecules, Supramolecular Assemblies and Materials; Wiley: 2009.
  3. Meyers, R. A. Encyclopedia of Molecular Biology and Molecular Medicine; VCH Publishers: Weinheim, Germany, 1996.
  4. Francotte, E.; Lindner, W. Chirality in Drug Research; Wiley-VCH: Weinheim, Germany, 2006.
  5. Meyers, R. A. Molecular Biology and Biotechnology: A Comprehensive Desk Reference; Wiley-VCH: 1995.
  6. Amemiya, R.; Yamaguchi, M. Org. Biomol. Chem. 2008, 6, 26. https://doi.org/10.1039/b713700a
  7. Katz, T. J. Angew. Chem. Int. Ed. 2000, 39, 1921. https://doi.org/10.1002/1521-3773(20000602)39:11<1921::AID-ANIE1921>3.0.CO;2-F
  8. Morrison, D. J.; Trefz, T. K.; Piers, W. E.; McDonald, R.; Parvez, M. J. Org. Chem. 2005, 70, 5309. https://doi.org/10.1021/jo0506231
  9. Botek, E.; Champagne, B. J. Chem. Phys. 2007, 127, 204101. https://doi.org/10.1063/1.2805395
  10. Rajca, A.; Miyasaka, M. In Functional Organic Materials, Syntheses, Strategies and Applications; Wiley-VCH: Weinheim, Germany, 2007; pp 547.
  11. Botek, E.; Andre, J.; Champagne, B.; Verbiest, T.; Persoons, A. J. Chem. Phys. 2005, 122, 234713. https://doi.org/10.1063/1.1914766
  12. Norel, L.; Rudolph, M.; Vanthuyne, N.; Williams, J. A. G.; Lescop, C.; Roussel, C.; Autschbach, J.; Crassous, J.; Racau, R. Angew. Chem. Int. Ed. 2009, 49, 99.
  13. Alkorta, I.; Blanco, F.; Elguero, J.; Schroder, D. Tetrahedron: Asymmetry 2010, 21, 962. https://doi.org/10.1016/j.tetasy.2010.05.032
  14. Abbate, S.; Bazzini, C.; Caronna, T.; Fontana, F.; Gambarotti, C.; Gangemi, F.; Longhi, G.; Mele, A.; Sora, I. N.; Panzeri, W. Tetrahedron 2006, 62, 139. https://doi.org/10.1016/j.tet.2005.09.132
  15. Urbano, A. Angew. Chem. Int. Ed. 2003, 42, 3986. https://doi.org/10.1002/anie.200301667
  16. Sahasithiwat, S.; Mophuang, T.; Menbangpung, L.; Kamtonwong, S.; Sooksimuang, T. Synth. Met. 2010, 160, 1148. https://doi.org/10.1016/j.synthmet.2010.02.039
  17. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models; John Wiley and Sons: UK, 2004.
  18. Hobza, P.; Müller-Dethlefs, K. Non-Covalent Interactions: Theory and Experiment; Royal Society of Chemistry: UK, 2009.
  19. Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 13126. https://doi.org/10.1021/jp066479k
  20. Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. https://doi.org/10.1016/j.cplett.2004.06.011
  21. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2007, 120, 215.
  22. Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157. https://doi.org/10.1021/ar700111a
  23. Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2008, 4, 1849. https://doi.org/10.1021/ct800246v
  24. Ahlrichs, R.; Penco, R.; Scoles, G. Chem. Phys. 1977, 19, 119. https://doi.org/10.1016/0301-0104(77)85124-0
  25. Grimme, S. J. Comput. Chem. 2004, 25, 1463. https://doi.org/10.1002/jcc.20078
  26. Grimme, S. J. Comput. Chem. 2006, 27, 1787. https://doi.org/10.1002/jcc.20495
  27. Grimme, S.; Antony, J.; Schwabe, T.; Muck-Lichtenfeld, C. Org. Biomol. Chem. 2007, 5, 741. https://doi.org/10.1039/b615319b
  28. Mackie, I. D.; DiLabio, G. A. J. Phys. Chem. A 2008, 112, 10968. https://doi.org/10.1021/jp806162t
  29. Moellmann, J.; Grimme, S. Phys. Chem. Chem. Phys. 2010, 12, 8500. https://doi.org/10.1039/c003432k
  30. Murguly, E.; McDonald, R.; Branda, N. R. Org. Lett. 2000, 2, 3169. https://doi.org/10.1021/ol006366y
  31. Carrillo, R.; Lopez-Rodriguez, M.; Martin, V.; Martin, T. Angew. Chem. Int. Ed. 2009, 48, 7803. https://doi.org/10.1002/anie.200903281
  32. Yamaguchi, M.; Okubo, H.; Hirama, M. Chem. Commun. 1996, 1771.
  33. Honzawa, S.; Okubo, H.; Anzai, S.; Yamaguchi, M.; Tsumoto, K.; Kumagai, I. Bioorg. Med. Chem. 2002, 10, 3213. https://doi.org/10.1016/S0968-0896(02)00175-X
  34. Neese, F. ORCA -- an Ab Initio, Density Functional and Semiempirical Program Package, Version 2.6.35, University of Bonn, 2008.
  35. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. https://doi.org/10.1039/b508541a
  36. Weigend, F.; Haser, M.; Patzelt, H.; Ahlrichs, R. Chem. Phys. Lett. 1998, 294, 143. https://doi.org/10.1016/S0009-2614(98)00862-8
  37. Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007, 9, 3397. https://doi.org/10.1039/b704725h
  38. Boys, S. F.; Bernadi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  39. Xu, Y.; Zhang, Y. X.; Sugiyama, H.; Umano, T.; Osuga, H.; Tanaka, K. J. Am. Chem. Soc. 2004, 126, 6566. https://doi.org/10.1021/ja0499748