DOI QR코드

DOI QR Code

Selective Determination of Serotonin on Poly(3,4-ethylenedioxy pyrrole)-single-walled Carbon Nanotube-Modified Glassy Carbon Electrodes

  • Kim, Seul-Ki (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Bae, Si-Ra (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Ahmed, Mohammad Shamsuddin (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • You, Jung-Min (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Jeon, Seung-Won (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2010.11.29
  • Accepted : 2011.02.07
  • Published : 2011.04.20

Abstract

An electrochemically-modified electrode [P(EDOP-SWNTs)/GCE] was prepared by electropolymerization of 3,4-ethylenedioxy pyrrole (EDOP) single-walled carbon nanotubes (SWNTs) on the surface of a glassy carbon electrode (GCE) and characterized by SEM, CV, and DPV. This modified electrode was employed as an electrochemical biosensor for the selective determination of serotonin concentrations at pH 7.4 and exhibited a typical enhanced effect on the current response of serotonin with a lower oxidation overpotential. The linear response was in the range of $1.0{\times}10^{-7}$ to $1.0{\times}10^{-5}$ M, with a correlation coefficient of 0.998 on the anodic current. The lower detection limit was calculated as 5.0 nM. Due to the relatively low currents and difference of potentials in the electrochemical responses of uric acid (UA), ascorbic acid (AA), and dopamine (DA), the modified electrode was a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of UA, AA, and DA.

Keywords

References

  1. Lin, M. T.; Tsay, H. J.; Su, W. H.; Chueh, F. Y. Am. J. Physiol.-Regul. 1998, 274, 1260.
  2. Imeri, L.; Mancia, M.; Bianchi, S.; Opp, M. R. Neuroscience 2000, 95, 445.
  3. Isbister, G. K.; Bowe, S. J.; Dawson, A.; Whyte, I. M. Clin. Toxicol. 2004, 42, 277. https://doi.org/10.1081/CLT-120037428
  4. Li, J.; Lin, X. Sens. Actuator B-Chem. 2007, 24, 486.
  5. Yao, H.; Li, S.; Tang, Y.; Chen, Y.; Lin, X. Electrochim. Acta 2009, 54, 4607. https://doi.org/10.1016/j.electacta.2009.02.108
  6. Selvaraju, T.; Ramaraj, R. Electrochem. Commun. 2003, 5, 667. https://doi.org/10.1016/S1388-2481(03)00151-6
  7. Swamy, B. E. K.; Venton, B. J. Analyst 2007, 132, 876. https://doi.org/10.1039/b705552h
  8. Peterson, Z. D.; Collins, D. C.; Bowerbank, C. R.; Lee, M. L.; Graves, S. W. J. Chromatogr. B 2002, 776, 221. https://doi.org/10.1016/S1570-0232(02)00368-9
  9. Lema, M.; Otero, J.; Marco, J. J. Chromatogr. A 1991, 47, 113.
  10. Cheng, F. C.; Shih, Y.; Liang, Y. J.; Yang, L. L.; Yang, C. S. J. Chromatogr. B 1996, 682, 195. https://doi.org/10.1016/0378-4347(96)00081-3
  11. Bielavska, M.; Kassa, J. Collect. Czech. Chem. Commun. 2000, 65, 1677. https://doi.org/10.1135/cccc20001677
  12. Hsieh, M. M.; Chang, H. T. Electrophoresis 2005, 26, 187. https://doi.org/10.1002/elps.200406123
  13. Yoshitake, T.; Kehr, J.; Todoroki, K.; Nohta, H.; Yamaguchi, M. Biomed. Chromatogr. 2006, 20, 267. https://doi.org/10.1002/bmc.560
  14. Baranowska, I.; Zydron, M. J. Planar Chromatogr.-Mod. TLC 2003, 6, 102.
  15. Li, Y.; huang, X.; chen, Y.; Wang, L.; Lin, X. Microchim. Acta 2009, 64, 107.
  16. Migdilski, J.; Blaz, T.; Lewenstam, A. Anal. Chim. Acta 1996, 322, 141. https://doi.org/10.1016/0003-2670(95)00575-7
  17. Cadogan, A.; Lewenstam, A.; Ivaska, A. Talanta 1992, 39, 617. https://doi.org/10.1016/0039-9140(92)80070-T
  18. Cadogan, A.; Gao, Z. Q.; Lewenstam, A.; Ivaska, A.; Diamond, D. Anal. Chem. 1992, 64, 2469. https://doi.org/10.1021/ac00044a031
  19. Weidlich, C.; Mangold, K. M.; Juttner, K. Electrochim. Acta 2001, 47, 741. https://doi.org/10.1016/S0013-4686(01)00754-X
  20. Weidlich, C.; Mangold, K. M.; Juttner, K. Electrochim. Acta 2005, 50, 5247. https://doi.org/10.1016/j.electacta.2005.02.083
  21. Cheng, D. M.; Xia, H. B.; Chan, H. S. O. Langmuir 2004, 20, 9909. https://doi.org/10.1021/la048377w
  22. Lui, Y. C.; Lee, H. T.; Yang, S. T. Electrochim. Acta 2006, 51, 3441. https://doi.org/10.1016/j.electacta.2005.09.040
  23. Zhang, P.; Yangb, Z. H.; Wang, D. J.; Kan, S. H.; Chai, X. D.; Liu, J. Z.; Li, T. J. Synth. Met 1997, 84, 165. https://doi.org/10.1016/S0379-6779(97)80695-9
  24. Li, Y.; Shi, G. Q. J. Phys. Chem. B 2005, 109(50), 23787. https://doi.org/10.1021/jp055256b
  25. Cioffi, N.; Torsi, L.; Losito, I.; Franco, C. D.; Bari, I. D.; Chiavarone, L.; Scamarcio, G.; Tsakova, V.; Sabbatini, L.; Zambonin, P. G. J. Mater. Chem. 2001, 11, 1434. https://doi.org/10.1039/b009857o
  26. Dahman, Y. J. Nanosci. Nanotechnol. 2009, 9, 5105. https://doi.org/10.1166/jnn.2009.1466
  27. Baron, R.; Wildgoose, G. G.; Compton, R. G. J. Nanosci. Nanotechnol. 2009, 9, 2274. https://doi.org/10.1166/jnn.2009.SE14
  28. Kumar, R.; Cronin, S. B. J. Nanosci. Nanotechnol. 2008, 8, 122. https://doi.org/10.1166/jnn.2008.N12
  29. Wu, K.; Fei, J.; Hu, S. Anal. Biochem. 2003, 318, 100. https://doi.org/10.1016/S0003-2697(03)00174-X
  30. Goyal, R. N.; Oyama, M.; Gupta, V. K.; Singh, S. P.; Sharma, R. A. Sens. Actuator B-Chem. 2008, 134, 816. https://doi.org/10.1016/j.snb.2008.06.027
  31. Goyal, R. N.; Oyama, M.; Sangal, A.; Singh, S. P. Indian J. Chem. 2005, 44A, 945.
  32. Goyal, R. N.; Singh, S. P. Talanta 2006, 69, 932. https://doi.org/10.1016/j.talanta.2005.11.041
  33. Goyal, R. N.; Oyama, M.; Singh, S. P. J. Electroanal. Chem. 2007, 611, 140. https://doi.org/10.1016/j.jelechem.2007.08.014
  34. Balasubramanian, K.; Burghard, M. Anal. Bioanal. Chem. 2006, 385, 452. https://doi.org/10.1007/s00216-006-0314-8
  35. Trojanowicz, M. Trac-Trends Anal. Chem. 2006, 25, 480. https://doi.org/10.1016/j.trac.2005.11.008
  36. Pumera, M.; OEanchez, S.; Ichinose, I.; Tang, J. Sens. Actuator BChem. 2007, 123, 1195. https://doi.org/10.1016/j.snb.2006.11.016
  37. Vamvakaki, V.; Chaniotakis, N. A. Sens. Actuator B-Chem. 2007, 126, 193. https://doi.org/10.1016/j.snb.2006.11.042
  38. Britto, P. J.; Santhanam, K. S. V.; Ajayan, P. M. Bioelectrochemistry 1996, 41, 121. https://doi.org/10.1016/0302-4598(96)05078-7
  39. Jacobs, C. B.; Peairs, M. J.; Venton, B. J. Anal. Chim. Acta 2010, 662, 105. https://doi.org/10.1016/j.aca.2010.01.009
  40. Sun, Y.; Fei, J.; Hou, J.; Zhang, Q.; Liu, Y.; Hu, B. Microchim. Acta 2009, 165, 373. https://doi.org/10.1007/s00604-009-0147-1
  41. Lin, X.; Zhang, Y.; Chen, W.; Wu, P. Sens. Actuator B-Chem. 2007, 122, 309. https://doi.org/10.1016/j.snb.2006.06.004

Cited by

  1. Glass/PDMS hybrid microfluidic device integrating vertically aligned SWCNTs to ultrasensitive electrochemical determinations vol.12, pp.11, 2012, https://doi.org/10.1039/c2lc40141j
  2. Voltammetric discrimination of skatole and indole at disposable screen printed electrodes vol.138, pp.5, 2013, https://doi.org/10.1039/c3an36421f
  3. Research Advance of Electrochemical Sensor Fabricated with Nanomaterials and their Application vol.418-420, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.418-420.2126
  4. Electrochemical Determination of Serotonin Using Pre-treated Multi-walled Carbon Nanotube-polyaniline Composite Electrode pp.10400397, 2018, https://doi.org/10.1002/elan.201800588
  5. Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review vol.186, pp.1, 2019, https://doi.org/10.1007/s00604-018-3069-y
  6. A bioinspired strategy for poly(3,4-ethylenedioxypyrrole) films with strong water adhesion vol.92, pp.2, 2011, https://doi.org/10.1515/pac-2019-0102
  7. A bioinspired strategy for poly(3,4-ethylenedioxypyrrole) films with strong water adhesion vol.92, pp.2, 2011, https://doi.org/10.1515/pac-2019-0102
  8. Electrochemical Detection of Serotonin Using t-ZrO2 Nanoparticles Modified Carbon Paste Electrode vol.167, pp.15, 2020, https://doi.org/10.1149/1945-7111/abb835