References
- Lin, M. T.; Tsay, H. J.; Su, W. H.; Chueh, F. Y. Am. J. Physiol.-Regul. 1998, 274, 1260.
- Imeri, L.; Mancia, M.; Bianchi, S.; Opp, M. R. Neuroscience 2000, 95, 445.
- Isbister, G. K.; Bowe, S. J.; Dawson, A.; Whyte, I. M. Clin. Toxicol. 2004, 42, 277. https://doi.org/10.1081/CLT-120037428
- Li, J.; Lin, X. Sens. Actuator B-Chem. 2007, 24, 486.
- Yao, H.; Li, S.; Tang, Y.; Chen, Y.; Lin, X. Electrochim. Acta 2009, 54, 4607. https://doi.org/10.1016/j.electacta.2009.02.108
- Selvaraju, T.; Ramaraj, R. Electrochem. Commun. 2003, 5, 667. https://doi.org/10.1016/S1388-2481(03)00151-6
- Swamy, B. E. K.; Venton, B. J. Analyst 2007, 132, 876. https://doi.org/10.1039/b705552h
- Peterson, Z. D.; Collins, D. C.; Bowerbank, C. R.; Lee, M. L.; Graves, S. W. J. Chromatogr. B 2002, 776, 221. https://doi.org/10.1016/S1570-0232(02)00368-9
- Lema, M.; Otero, J.; Marco, J. J. Chromatogr. A 1991, 47, 113.
- Cheng, F. C.; Shih, Y.; Liang, Y. J.; Yang, L. L.; Yang, C. S. J. Chromatogr. B 1996, 682, 195. https://doi.org/10.1016/0378-4347(96)00081-3
- Bielavska, M.; Kassa, J. Collect. Czech. Chem. Commun. 2000, 65, 1677. https://doi.org/10.1135/cccc20001677
- Hsieh, M. M.; Chang, H. T. Electrophoresis 2005, 26, 187. https://doi.org/10.1002/elps.200406123
- Yoshitake, T.; Kehr, J.; Todoroki, K.; Nohta, H.; Yamaguchi, M. Biomed. Chromatogr. 2006, 20, 267. https://doi.org/10.1002/bmc.560
- Baranowska, I.; Zydron, M. J. Planar Chromatogr.-Mod. TLC 2003, 6, 102.
- Li, Y.; huang, X.; chen, Y.; Wang, L.; Lin, X. Microchim. Acta 2009, 64, 107.
- Migdilski, J.; Blaz, T.; Lewenstam, A. Anal. Chim. Acta 1996, 322, 141. https://doi.org/10.1016/0003-2670(95)00575-7
- Cadogan, A.; Lewenstam, A.; Ivaska, A. Talanta 1992, 39, 617. https://doi.org/10.1016/0039-9140(92)80070-T
- Cadogan, A.; Gao, Z. Q.; Lewenstam, A.; Ivaska, A.; Diamond, D. Anal. Chem. 1992, 64, 2469. https://doi.org/10.1021/ac00044a031
- Weidlich, C.; Mangold, K. M.; Juttner, K. Electrochim. Acta 2001, 47, 741. https://doi.org/10.1016/S0013-4686(01)00754-X
- Weidlich, C.; Mangold, K. M.; Juttner, K. Electrochim. Acta 2005, 50, 5247. https://doi.org/10.1016/j.electacta.2005.02.083
- Cheng, D. M.; Xia, H. B.; Chan, H. S. O. Langmuir 2004, 20, 9909. https://doi.org/10.1021/la048377w
- Lui, Y. C.; Lee, H. T.; Yang, S. T. Electrochim. Acta 2006, 51, 3441. https://doi.org/10.1016/j.electacta.2005.09.040
- Zhang, P.; Yangb, Z. H.; Wang, D. J.; Kan, S. H.; Chai, X. D.; Liu, J. Z.; Li, T. J. Synth. Met 1997, 84, 165. https://doi.org/10.1016/S0379-6779(97)80695-9
- Li, Y.; Shi, G. Q. J. Phys. Chem. B 2005, 109(50), 23787. https://doi.org/10.1021/jp055256b
- Cioffi, N.; Torsi, L.; Losito, I.; Franco, C. D.; Bari, I. D.; Chiavarone, L.; Scamarcio, G.; Tsakova, V.; Sabbatini, L.; Zambonin, P. G. J. Mater. Chem. 2001, 11, 1434. https://doi.org/10.1039/b009857o
- Dahman, Y. J. Nanosci. Nanotechnol. 2009, 9, 5105. https://doi.org/10.1166/jnn.2009.1466
- Baron, R.; Wildgoose, G. G.; Compton, R. G. J. Nanosci. Nanotechnol. 2009, 9, 2274. https://doi.org/10.1166/jnn.2009.SE14
- Kumar, R.; Cronin, S. B. J. Nanosci. Nanotechnol. 2008, 8, 122. https://doi.org/10.1166/jnn.2008.N12
- Wu, K.; Fei, J.; Hu, S. Anal. Biochem. 2003, 318, 100. https://doi.org/10.1016/S0003-2697(03)00174-X
- Goyal, R. N.; Oyama, M.; Gupta, V. K.; Singh, S. P.; Sharma, R. A. Sens. Actuator B-Chem. 2008, 134, 816. https://doi.org/10.1016/j.snb.2008.06.027
- Goyal, R. N.; Oyama, M.; Sangal, A.; Singh, S. P. Indian J. Chem. 2005, 44A, 945.
- Goyal, R. N.; Singh, S. P. Talanta 2006, 69, 932. https://doi.org/10.1016/j.talanta.2005.11.041
- Goyal, R. N.; Oyama, M.; Singh, S. P. J. Electroanal. Chem. 2007, 611, 140. https://doi.org/10.1016/j.jelechem.2007.08.014
- Balasubramanian, K.; Burghard, M. Anal. Bioanal. Chem. 2006, 385, 452. https://doi.org/10.1007/s00216-006-0314-8
- Trojanowicz, M. Trac-Trends Anal. Chem. 2006, 25, 480. https://doi.org/10.1016/j.trac.2005.11.008
- Pumera, M.; OEanchez, S.; Ichinose, I.; Tang, J. Sens. Actuator BChem. 2007, 123, 1195. https://doi.org/10.1016/j.snb.2006.11.016
- Vamvakaki, V.; Chaniotakis, N. A. Sens. Actuator B-Chem. 2007, 126, 193. https://doi.org/10.1016/j.snb.2006.11.042
- Britto, P. J.; Santhanam, K. S. V.; Ajayan, P. M. Bioelectrochemistry 1996, 41, 121. https://doi.org/10.1016/0302-4598(96)05078-7
- Jacobs, C. B.; Peairs, M. J.; Venton, B. J. Anal. Chim. Acta 2010, 662, 105. https://doi.org/10.1016/j.aca.2010.01.009
- Sun, Y.; Fei, J.; Hou, J.; Zhang, Q.; Liu, Y.; Hu, B. Microchim. Acta 2009, 165, 373. https://doi.org/10.1007/s00604-009-0147-1
- Lin, X.; Zhang, Y.; Chen, W.; Wu, P. Sens. Actuator B-Chem. 2007, 122, 309. https://doi.org/10.1016/j.snb.2006.06.004
Cited by
- Glass/PDMS hybrid microfluidic device integrating vertically aligned SWCNTs to ultrasensitive electrochemical determinations vol.12, pp.11, 2012, https://doi.org/10.1039/c2lc40141j
- Voltammetric discrimination of skatole and indole at disposable screen printed electrodes vol.138, pp.5, 2013, https://doi.org/10.1039/c3an36421f
- Research Advance of Electrochemical Sensor Fabricated with Nanomaterials and their Application vol.418-420, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.418-420.2126
- Electrochemical Determination of Serotonin Using Pre-treated Multi-walled Carbon Nanotube-polyaniline Composite Electrode pp.10400397, 2018, https://doi.org/10.1002/elan.201800588
- Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review vol.186, pp.1, 2019, https://doi.org/10.1007/s00604-018-3069-y
- A bioinspired strategy for poly(3,4-ethylenedioxypyrrole) films with strong water adhesion vol.92, pp.2, 2011, https://doi.org/10.1515/pac-2019-0102
- A bioinspired strategy for poly(3,4-ethylenedioxypyrrole) films with strong water adhesion vol.92, pp.2, 2011, https://doi.org/10.1515/pac-2019-0102
- Electrochemical Detection of Serotonin Using t-ZrO2 Nanoparticles Modified Carbon Paste Electrode vol.167, pp.15, 2020, https://doi.org/10.1149/1945-7111/abb835