DOI QR코드

DOI QR Code

Lithium Insertion Behavior of Nanoscopic Co3O4 Prepared with Avian Egg Membrane as a Template

  • Christy, Maria (School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University) ;
  • Jisha, M.R (Specialized Graduate School of Hydrogen and Fuel Cells Engineering, Chonbuk National University) ;
  • Kim, Ae-Rhan (Specialized Graduate School of Hydrogen and Fuel Cells Engineering, Chonbuk National University) ;
  • Nahm, Kee-Suk (School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University) ;
  • Yoo, Dong-Jin (Specialized Graduate School of Hydrogen and Fuel Cells Engineering, Chonbuk National University) ;
  • Suh, E.K. (School of Semiconductor and Chemical Engineering, and Semiconductor Physics Research Center, Chonbuk National University) ;
  • Kumari, T. Sri Devi (Electrochemical Power Systems Division, Central Electrochemical Research Institute) ;
  • Kumar, T. Prem (Electrochemical Power Systems Division, Central Electrochemical Research Institute) ;
  • Stephan, A. Manuel (Electrochemical Power Systems Division, Central Electrochemical Research Institute)
  • Received : 2010.11.01
  • Accepted : 2011.02.06
  • Published : 2011.04.20

Abstract

Nanoscopic $Co_3O_4$ particles were prepared using avian egg membrane as a template at $800^{\circ}C$. The prepared materials were subjected to XRD, SEM, TEM and Raman spectroscopic studies. Cyclic voltammetry study shows a single step oxidation and reduction process. Electrochemical lithium insertion behavior of the materials was examined in coin cells of the 2032 configuration. The material showed a discharge capacity 600mAh/g even after 20 cycles.

Keywords

References

  1. Poizot, P.; Laruelli, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496. https://doi.org/10.1038/35035045
  2. Tarascon, J. M.; Grugeon, S.; Morcrette, M.; Laruelle, S.; Rozier, P.; Poizot, P. C. R. Chimie. 2005, 8, 9. https://doi.org/10.1016/j.crci.2004.12.005
  3. Pereira, N.; Dupont, L.; Tarascon, J. M.; Klein, L. C.; Amatucci, G. G. J. Electrochem. Soc. 2003, 150, A1273. https://doi.org/10.1149/1.1599845
  4. Xue, M. Z.; Fu, Z. W. Electrochem. Commun. 2006, 8, 1855. https://doi.org/10.1016/j.elecom.2006.08.025
  5. Bervas, M.; Mansour, A. N.; Yoon, W. S.; Al-Sharab, J. F.; Badway, F.; Cosandey, F.; Klein, L. C.; Amatucci, G. G. J. Electrochem. Soc. 2006, 153, A799. https://doi.org/10.1149/1.2167951
  6. Aragon, M. J.; Pérez-Vicente, C.; Tirado, J. L. Electrochem. Commun. 2007, 9, 1744. https://doi.org/10.1016/j.elecom.2007.03.031
  7. Lavela, P.; Ortiz, G. F.; Tirado, J. L.; Zhecheva, E.; Stoyanova, R.; Ivanova, Sv. J. Phys. Chem. 2007, C111, 14238.
  8. Li, X. D.; Yang, W. S.; Li, F.; Evans, D. G.; Duan, X. J. J. Phys. Chem. Solids 2006, 67, 1286. https://doi.org/10.1016/j.jpcs.2006.01.096
  9. Debart, A.; Dupont, L.; Poizot, P.; Leriche, J. B.; Tarascon, J. M. J. Electrochem. Soc. 2001, 148, A1266. https://doi.org/10.1149/1.1409971
  10. Jiao, F.; Shaju, K. M.; Bruce, P. G. Angew. Chem. Int. Ed. 2005, 44, 6050. https://doi.org/10.1002/anie.200501341
  11. Luo, J. Y.; Zhang, J. J.; Xia, Y. Y. Chem. Mater. 2006, 18(23), 5618. https://doi.org/10.1021/cm061458o
  12. Jiao, F.; Harrison, A.; Jumas, J. C.; Chadwick, A. V.; Kockelmann, W.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 5468. https://doi.org/10.1021/ja0584774
  13. Jiao, F.; Bruce, P. G. Adv. Mater. 2007, 19, 657. https://doi.org/10.1002/adma.200602499
  14. Thackeray, M. M.; Baker, S. D.; Adendorff, K. T.; Goodenough, J. B. Solid State Ionics 1985, 17, 175. https://doi.org/10.1016/0167-2738(85)90069-4
  15. Larcher, D.; Sudant, G.; Leriche, J. B.; Chabre, Y.; Tarascon, J. M. J. Electrochem. Soc. 2002, 149, A234. https://doi.org/10.1149/1.1435358
  16. Shaju, K. M.; Jiao, F.; Débart, A.; Bruce, P. G. Phys. Chem. Chem. Phys. 2007, 9, 1837. https://doi.org/10.1039/b617519h
  17. He, T.; Chen, D.; Jiao, X. Chem. Mater. 2004, 16, 737. https://doi.org/10.1021/cm0303033
  18. Patrissi, C. J.; Martin, C. R. Chem. Mater. 1997, 9, 2544. https://doi.org/10.1021/cm970268y
  19. Shi, X.; Han, S.; Sanedrin, R. J.; Galvez, C.; Ho, D. G.; Hernandez, B.; Zhou, F.; Selke, M. Nano Lett. 2002, 2, 289. https://doi.org/10.1021/nl0156944
  20. Yang, D.; Qi, L.; Ma, J. Adv. Mater. 2002, 14, 1543. https://doi.org/10.1002/1521-4095(20021104)14:21<1543::AID-ADMA1543>3.0.CO;2-B
  21. Sri Devi Kumari, T.; Prem Kumar, T. Ionics 2010, 16, 61. https://doi.org/10.1007/s11581-009-0342-4
  22. Cullity, B. D. Elements of X-ray Diffraction; Addison-Wesley: New York, 1978; p. 278.
  23. Dennis, J. E.; Carrino, D. A.; Yamashita, K.; Caplan, A. I. Matrix Biol. 2000, 19, 683. https://doi.org/10.1016/S0945-053X(00)00118-9
  24. Hadjiev, V. G.; Iliev, M. N.; Vergilov, I. V. J. Phys. C: Solid State Phys. 1988, 21, L199. https://doi.org/10.1088/0022-3719/21/7/007
  25. Shebanova, O. N.; Lazor, P. J. Solid State Chem. 2003, 174, 474.
  26. Shebanova, O. N.; Lazor, P. J. Chem. Phys. 2003, 119, 6100. https://doi.org/10.1063/1.1602072
  27. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry; Wiley: New York, 1997.
  28. Larcher, D.; Sudant, G.; Leriche, J. B.; Chabre, Y.; Tarascon, J. M. J. Electrochem. Soc. 2002, 149, A234. https://doi.org/10.1149/1.1435358
  29. Fu, Z. W.; Wang, Y.; Zhang, Y.; Qin, Q. Z. Solid State Ionics 2004, 170, 105. https://doi.org/10.1016/j.ssi.2004.02.020
  30. Pralong, V.; Leriche, J. B.; Beaudoin, B.; Naudin, E.; Morcrette, M.; Tarascon, J. M. Solid State Ionics 2004, 166, 295. https://doi.org/10.1016/j.ssi.2003.11.018
  31. Yuan, Z.; Huang, F.; Feng, C.; Sun J.; Zhou, Y. Mater. Chem. Phys. 2003, 79, 1. https://doi.org/10.1016/S0254-0584(02)00442-X
  32. Laruelle, S.; Grugeon, S.; Poizot, P.; Dolle, M.; Dupont, L.; Tarascon, J. M. J. Electrochem. Soc. 2002, 149, A627. https://doi.org/10.1149/1.1467947
  33. Maier, J. Nat. Mater. 2005, 4, 805. https://doi.org/10.1038/nmat1513

Cited by

  1. Interfacial Natures and Controlling Morphology of Co Oxide Nanocrystal Structures by Adding Spectator Ni Ions vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.505
  2. Glycerol steam reforming over La–Ce–Co mixed oxide-derived cobalt catalysts vol.5, pp.56, 2015, https://doi.org/10.1039/C5RA02837J
  3. Nanorod Arrays on Carbon Fibers for Energy Storage vol.28, pp.11, 2016, https://doi.org/10.1021/acs.chemmater.6b01142
  4. A Highly Stable and Efficient Co-Mg-Sr Mixed Oxide Catalysts for Hydrogen Production from Glycerol Steam Reforming vol.150, pp.9, 2011, https://doi.org/10.1007/s10562-020-03181-4
  5. Physical and Interfacial Studies on Li0.5La0.5TiO3- Incorporated Poly(ethylene oxide)-Based Electrolytes for All-Solid-State Lithium Batteries vol.35, pp.16, 2011, https://doi.org/10.1021/acs.energyfuels.1c01151