DOI QR코드

DOI QR Code

Theoretical Studies on Mechanism and Kinetics of the Hydrogen-Abstraction Reaction of CF3CH2CHO with OH Radicals

  • Ci, Cheng-Gang (State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University) ;
  • Yu, Hong-Bo (State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University) ;
  • Wan, Su-Qin (State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University) ;
  • Liu, Jing-Yao (State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University) ;
  • Sun, Chia-Chung (State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University)
  • Received : 2010.10.05
  • Accepted : 2011.02.02
  • Published : 2011.04.20

Abstract

The hydrogen abstraction reaction of $CF_3CH_2CHO$ + OH has been studied theoretically by dual-level direct dynamics method. Two stable conformers, trans- and cis-$CF_3CH_2CHO$, have been located, and there are four distinct OH hydrogen-abstraction channels from t-$CF_3CH_2CHO$ and two channels from c-$CF_3CH_2CHO$. The required potential energy surface information for the kinetic calculation was obtained at the MCG3-MPWB//M06-2X/aug-cc-pVDZ level. The rate constants, which were calculated using improved canonical transitionstate theory with small-curvature tunneling correction (ICVT/SCT) were fitted by a four-parameter Arrhenius equation. It is shown that the reaction proceeds predominantly via the H-abstraction from the -CHO group over the temperature range 200-2000 K. The calculated rate constants were in good agreement with the experimental data between 263 and 358 K.

Keywords

References

  1. Liu, R.; Huie, R. E.; Kurylo, M. J. J. Phys. Chem. 1990, 94, 3247. https://doi.org/10.1021/j100371a004
  2. Hsu. K. J.; DeMore, W. B. J. Phys. Chem. 1995, 99, 1235. https://doi.org/10.1021/j100004a025
  3. Talhaoui, A.; Louis, F.; Devolder, P.; Meriaux, B.; Sawerysyn, J. P. J. Phys. Chem. 1996, 100, 13531. https://doi.org/10.1021/jp9603243
  4. Sekiya, A.; Misaki, S. In Proceedings of the International Conference on Ozone Protection Technologies; Baltimore: Maryland, 12-13 November, 1997; p 26.
  5. Kambanis, K. G.; Lazarou, Y. G.; Papagiannakopoulos, P. Air Pollution esearch report 66, ‘‘Polar Stratospheric Ozone 1997’’; European Commission: Belgium, 1998; p 557.
  6. Kissa, E., Schick, M. J., Fowkes, F. M., Eds.; Fluorinated Surfactants, Synthesis, Properties, and Applications; Marcel Dekker: New York, 1994.
  7. SellevAg, S. R.; Nielsen, C. J.; Sovde, O. A.; Myhre, G.; Sundet, J. K.; Stordal, F.; Isaksen, I. S. Atoms. Environ. 2004, 38, 6725. https://doi.org/10.1016/j.atmosenv.2004.09.023
  8. Hurley, M. D.; Wallington, T. J.; Sulbaek Andersen, M. P.; Ellis, D. A.; Martin, J. W.; Mabury, S. A. J. Phys. Chem. A. 2004, 108, 1973. https://doi.org/10.1021/jp0373088
  9. Kelly, T.; Bossoutrot, V.; Magneron, I.; Wirtz, K.; Treacy, J.; Mellouki, A.; Sidebottom, H.; Le Bras, G. J. Phys. Chem. A 2005, 109, 347. https://doi.org/10.1021/jp0467402
  10. Hurley, M. D.; Misner, J. A.; Ball, J. C.; Wallington, T. J.; Ellis, D. A.; Martin, J. W.; Mabury, S. A., Sulbaek Andersen, M. P. J. Phys. Chem. A 2005, 109, 9816. https://doi.org/10.1021/jp0535902
  11. Antinlo, M.; Jimenez, E.; Notario, A.; Martínez, E.; Sellevag, S. R.; Kelly, T.; Sidebottom, H.; Nielsen, C. J. Phys. Chem. Chem. Phys. 2004, 6, 1243. https://doi.org/10.1039/b315941h
  12. Truhlar, D. G. In The Reaction Path Chemistry: Current Approaches and Perspectives; Heidrich, D., Kluwer, D., Eds.; The Netherlands, 1995; p 229.
  13. Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J. J. Phys. Chem. 1996, 100, 12771. https://doi.org/10.1021/jp953748q
  14. Hu, W. P.; Truhlar, D. G. J. Am. Chem. Soc. 1996, 118, 860. https://doi.org/10.1021/ja952464g
  15. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. https://doi.org/10.1007/s00214-007-0310-x
  16. Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2005, 109, 4209. https://doi.org/10.1021/jp050932v
  17. Truhlar, D. G.; Garrett, B. C. Acc. Chem. Res. 1980, 13, 440. https://doi.org/10.1021/ar50156a002
  18. Truhlar, D. G.; Lsaacson, A. D.; Garrett, B. C. The Theory of Chemical Reaction Dynamics; Bear, M., Ed.; CRC: Boca Raton, FL, 1985; p 65.
  19. Truhlar, D. G.; Garrett, B. C. Anmu. Rev. Phys. Chem. 1984, 35, 159. https://doi.org/10.1146/annurev.pc.35.100184.001111
  20. Chuang, Y. Y.; Corchado, J. C.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 1140. https://doi.org/10.1021/jp9842493
  21. IUPAC. Available from: http://www.iupac.org/reports/1999/7110minkin/i.html.
  22. Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 2000, 112, 6532. https://doi.org/10.1063/1.481224
  23. Ochterski, J. W.; Petersson, G. A.; Montgomery, A. J., Jr. J. Chem. Phys. 1996, 104, 2598. https://doi.org/10.1063/1.470985
  24. Zhao, Y.; Truhlar, D. G. MLGAUSS-Version 2.0; University of Minnesota: Minneapolis, 2005.
  25. Frisch, M. J.; Truck, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Boboul, A. G.; Stefnov, B. B.; Liu, G.; Liaschenko, A.; Piskorz, P.; Komaromi, L.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle E. S.; Pople, J. A. GAUSSIAN 03, Revision A.1, Guassian, Inc., Pittsburgh, PA, 2003.
  26. Gaussian 09, Revision, A. L.; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K, N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT 2009.
  27. Corchado, J. C.; Chuang, Y. Y.; Fast, P. L.; Hu, W. P.; Liu, Y. P.; Lynch, G. C.; Nguyen, K. A.; Jackels, C. F.; Ramos, A. F.; Ellingson, B. A.; Lynch, B. J.; Melissas, V. S.; Villa, J.; Rossi, I.; Coitino, E. L.; Pu, J.; Albu, T. V.; Steckler, R.; Garrett, B. C.; Isaacson, A. D.; Truhlar, D. G. POLYRATE, version 9.7; University of Minnesota: Minneapolis, MN, 2007.
  28. Garrett, B. C.; Truhlar, D. G.; Grev. R. S.; Magnuson, A. W. J. Phys. Chem. 1980, 84, 1730. https://doi.org/10.1021/j100450a013
  29. Lu, D. H.; Truong, T. N.; Melissas, V. S.; Lynch, G. C.; Liu, Y. P.; Grarrett, B. C.; Steckler, R.; Issacson, A. D.; Rai, S. N.; Hancock, G. C.; Lauderdale, J. G.; Joseph, T.; Truhlar, D. G. Comput. Phys. Commun. 1992, 71, 235. https://doi.org/10.1016/0010-4655(92)90012-N
  30. Liu, Y. P.; Lynch, G. C.; Truong, T. N.; Lu, D. H.; Truhlar, D. G.; Grarrett, B. C. J. Am. Chem. Soc. 1993, 115, 2408. https://doi.org/10.1021/ja00059a041
  31. Truhlar, D. G. J. Comput. Chem. 1991, 12, 266. https://doi.org/10.1002/jcc.540120217
  32. Chuang, Y. Y.; Truhlar, D. G. J. Chem. Phys. 2000, 112, 1221. https://doi.org/10.1063/1.480768
  33. Lide, D. R. CRC Handbook of Chemistry and Physics, 80th ed.; CRC Press: New York, 1999.
  34. NIST Chemistry Webbook, Linstrom, P. J., Mallard, W. G., Eds.; NIST Standard Reference Database Number 69, http://webbook.Nist.Gov/chemistry.
  35. Wu, E. C.; Rodgers, A. S. J. Phys. Chem. 1974, 78, 2315. https://doi.org/10.1021/j150671a002
  36. Zhang, J. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2010, 12, 7782. https://doi.org/10.1039/b927504e
  37. Shimanouchi, T. Tables of Molecular Vibrational Frequencies Consolidated; National Bureau of Standandard; U. S. Government Pring Office: Washington, D. C., 1972; Vol. 1.

Cited by

  1. UV absorption cross sections between 230 and 350 nm and pressure dependence of the photolysis quantum yield at 308 nm of CF3CH2CHO vol.13, pp.35, 2011, https://doi.org/10.1039/c1cp21368g
  2. at 248 and 266 nm: Quantum Yields, Products, and Mechanism vol.117, pp.41, 2013, https://doi.org/10.1021/jp404823b
  3. Predicting Gaseous Reaction Rates of Short Chain Chlorinated Paraffins with ·OH: Overcoming the Difficulty in Experimental Determination vol.48, pp.23, 2014, https://doi.org/10.1021/es504339r
  4. Theoretical study on the kinetics and branching ratios of the gas phase reactions of 4,4,4-trifluorobutanal (TFB) with OH radical in the temperature range of 250-400K and atmospheric pressure vol.154, pp.None, 2013, https://doi.org/10.1016/j.jfluchem.2013.06.015
  5. Multi‐coefficients correlation methods vol.10, pp.6, 2011, https://doi.org/10.1002/wcms.1474