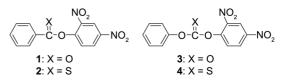
Pyridinolysis of 2,4-Dinitrophenyl Phenyl Thionocarbonate: Effect of Changing Electrophilic Center from C=O to C=S on Reactivity and Mechanism

Min Ji Son,[†] Song-I Kim, and Ik-Hwan Um^{*}

Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea. *E-mail: ihum@ewha.ac.kr *Present Address: Department of Chemistry, Duksung Women's University, Seoul 132-714, Korea Received December 10, 2010, Accepted January 31, 2011

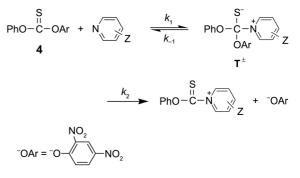
Second-order rate constants (k_N) have been measured spectrophotometrically for nucleophilic substitution reactions of 2,4-dinitrophenyl phenyl thionocarbonate **4** with a series of Z-substituted pyridines in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C. The Brønsted-type plot for the reactions of **4** exhibits downward curvature (i.e., $\beta_1 = 0.21$ and $\beta_2 = 1.04$), indicating that the reactions proceed through a stepwise mechanism with a change in rate-determining step. It has been found that **4** is less reactive than its oxygen analogue, 2,4-dinitrophenyl phenyl carbonate **3**, although the thionocarbonate is expected to be more electrophilic than its oxygen analogue. The pK_a at the center of the Brønsted curvature, defined as pK_a^o , has been analyzed to be 6.6 for the reactions of **4** and 8.5 for those of **3**. Dissection of k_N into the microscopic rate constants k_1 and k_2/k_{-1} ratio has revealed that the reactions of **4** result in smaller k_1 values but larger k_2/k_{-1} ratios than the corresponding reactions of **3**. The larger k_2/k_{-1} ratios have been concluded to be responsible for the smaller pK_a^o found for the reactions of **4**.


Key Words : Electrophilic center, Pyridinolysis, Polarizability, HSAB principle, Rate-determining step

Introduction

Nucleophilic substitution reactions of esters with amines have been intensively investigated due to their importance in biological processes as well as synthetic applications.¹⁻¹⁰ Aminolysis of carboxylic esters has generally been proposed to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate T^{\pm} on the basis of curved Brønsted-type plots reported for reactions of esters possessing a good leaving group (e.g., 2,4-dinitrophenoxide).¹⁻¹⁰ The rate-determining step (RDS) has been suggested to be dependent on the basicity of the incoming amine and the leaving group, i.e., it changes at pK_a° , defined as the pK_a at the center of the Brønsted curvature,^{9,10} from breakdown of T^{\pm} to its formation as the incoming amine becomes more basic than the leaving group by 4 to 5 pK_a units.¹⁻¹⁰

Aminolysis of thiono esters has been reported to proceed through one or two intermediates (i.e., T^{\pm} and its deprotonated form T⁻) depending on the reaction conditions.⁵ Castro *et al.* have reported that reactions of 4-nitrophenyl phenyl thionocarbonate with strongly basic amines proceed through T^{\pm} while those with weakly basic amines proceed through T^{\pm} and $T^{-.5}$ However, we have shown that the aminolysis of *O*-4-nitrophenyl thionobenzoate proceeds through T^{\pm} and T^{-} regardless of amine basicity.⁶


Pyridinolysis of esters is relatively simple since the pyridinium moiety in T^{\pm} has no acidic proton to be removed. Pyridinolyses of 2,4-dinitrophenyl benzoate (1) and thionobenzoate (2) have been reported to proceed through a stepwise mechanism with a change in RDS on the basis of curved Brønsted-type plots.⁷ Interestingly, the pK_a° has been reported to be strongly dependent on the nature of the electrophilic center, i.e., 9.5 and 7.5 for the reactions of $\mathbf{1}$ and $\mathbf{2}$, respectively.⁷



We have recently reported that pyridinolysis of 2,4dinitrophenyl phenyl carbonate (3) proceeds through a stepwise mechanism with a change in RDS at $pK_a^{\circ} = 8.5$.⁸ Our study has been extended to pyridinolysis of 2,4-dinitrophenyl phenyl thionocarbonate (4) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and mechanism including pK_a° .

Results and Discussion

The kinetic study was performed spectrophotometrically

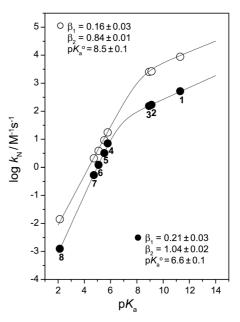
Scheme 1. Pyridinolysis of 2,4-dinitrophenyl phenyl thionocarbonate.

Table 1. Summary of Second-Order Rate Constants (k_N) for Reactions of 2,4-Dinitrophenyl Phenyl Carbonate (**3**) and Thionocarbonate (**4**) with Z-substituted Pyridines in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C^{*a*}

Entry	Z	pK _a	$k_{\rm N} / {\rm M}^{-1} {\rm s}^{-1}$		
			3	4	
1	4-O ⁻	11.30	8720	513	
2	4-NMe ₂	9.12	2627	169	
3	$4-NH_2$	8.93	2520	152	
4	3,4-Me ₂	5.78	17.4	7.07	
5	4-Me	5.53	9.11	3.20	
6	3-Me	5.09	3.83	1.21	
7	Н	4.73	2.07	5.29×10^{-1}	
8	3-Cl	2.14	1.40×10^{-2}	1.24×10^{-3}	

^{*a*}Data for the reactions of **3** were taken from ref. 8.

under pseudo-first-order conditions (i.e., the pyridine concentration was in excess over the substrate concentration). All reactions proceeded with quantitative liberation of 2,4dinitrophenoxide ion and/or its conjugate acid. The reactions obeyed first-order kinetics and pseudo-first-order rate constants (k_{obsd}) were determined from the equation, $\ln (A_{\infty} - A_t)$ $= -k_{obsd}t + C$. The correlation coefficient for the linear regression was usually higher than 0.9995. Plots of k_{obsd} vs. [pyridine] were linear and passed through the origin, indicating that contribution of H₂O and/or OH⁻ from hydrolysis of pyridines to k_{obsd} is negligible. Thus, the second-order rate constants (k_N) were determined from the slope of the linear plots of k_{obsd} vs. [pyridine]. The uncertainty in the k_N values is estimated to be less than 3% from replicate runs. The $k_{\rm N}$ values determined for the reactions of 4 are summarized in Table 1 together with those reported previously for the corresponding reactions of 3 for comparison purpose.


Effect of Changing Electrophilic Center from C=O to C=S on Reactivity. As shown in Table 1, the reactivity of pyridines decreases as the basicity of pyridines decreases, e.g., the k_N value for the reactions of 4 decreases from 513 $M^{-1}s^{-1}$ to 7.07 and $1.24 \times 10^{-3} M^{-1}s^{-1}$ as the pK_a of the pyridinium decreases from 11.3 to 5.78 and 2.14, in turn. A similar reactivity trend is shown for the corresponding reactions of 3, although 4 is much less reactive than 3.

Replacement of the C=O in **3** by a polarizable C=S bond would increase the polarizability of the reaction center, since the overlap between 2p and 3p orbitals in a C=S bond is not as strong as that between 2p orbitals in a C=O bond.^{11,12} The enhanced polarizability of thiono esters is also reflected in ¹³C NMR spectra as well as the difference in bond energy between C=O and C=S bonds. The chemical shifts have been reported to be 163.8 and 209.8 ppm for the carbon atoms of the C=O and C=S bonds in 4-nitrophenyl benzoate and thionobenzoate,¹³ respectively, while 155.3 and 193.4 ppm for those in 4-nitrophenyl phenyl carbonate and thionocarbonate,¹⁴ respectively. It is apparent that contribution of II_a to the resonance structures is more significant than that of I_a. Thus, one can expect that **4** is more electrophilc than **3**. In fact, thiono ester **2** has been reported to be 16000 fold more reactive than its oxygen analogue **1** toward 4-chlorothiophenoxide (4-ClC₆H₄S⁻), a highly polarizable nucleophile.¹³

The fact that **4** is less reactive toward pyridines than **3** appears to be in accord with the HSAB principle since pyridine was classified to be a hard base.¹⁵ This argument can be further supported by the reports that **2** is less reactive than **1** toward hard bases such as HO⁻ and EtO^{-,13,16} Similarly, Castro *et al.* have reported that 4-nitrophenyl chlorothiono-formate and bis-(4-nitrophenyl) thionocarbonate are less reactive than their oxygen analogues toward aryloxides.¹⁷ Thus, one can suggest that reactivity of thiono esters is, at least partly, dependent on the nature of nucleophiles.

Effect of Changing Electrophilic Center from C=O to C=S on Mechanism. The effect of pyridine basicity on reactivity is illustrated in Figure 1 for the reactions of 3 and 4. The Brønsted-type plots are nonlinear, i.e., a large slope in the low pK_a region and a small one in the high pK_a region. Such curved Brønsted-type plots are typical for reactions reported to proceed through a stepwise mechanism with a change in RDS.¹⁻¹⁰ In fact, the nonlinear Brønsted-type plot for the reaction of 3 has been reported as evidence for a change in RDS.⁸ Thus, one can propose that the reactions of 4 proceed also through a stepwise mechanism with a change in RDS as shown in Scheme 1 on the basis of the curved Brønsted-type plot.

The curved Brønsted-type plots shown in Figure 1 have been analyzed on the basis of the mechanism proposed in Scheme 1 using a semiempirical equation Eq. (1).¹⁸ The

Figure 1. Brønsted-type plots for reactions of 2,4-dinitrophenyl phenyl carbonate **3** (O) and thionocarbonate **4** (\bullet) with Z-substituted pyridines in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C. The identity of numbers is given in Table 1.

parameters β_1 and β_2 represent the slope of the Brønstedtype plots in Figure 1 for the reactions with strongly basic and weakly basic pyridines, respectively, and k_N° refers to the k_N value at pK_a° , where $k_2/k_{-1} = 1$.

$$\log (k_{\rm N}/k_{\rm N}^{\circ}) = \beta_2 (pK_{\rm a} - pK_{\rm a}^{\circ}) - \log (1 + \alpha)/2$$

where
$$\log \alpha = (\beta_2 - \beta_1)(pK_{\rm a} - pK_{\rm a}^{\circ})$$
(1)

The parameters β_1 , β_2 and pK_a° values determined in this way are shown in Figure 1. One can see that the reactions of **4** result in slightly larger β_1 and β_2 values than those of **3**, i.e., β_1 and β_2 are 0.16 and 0.84 for the reactions of **3** while 0.21 and 1.04 for those of **4**, respectively. However, the pK_a° for the reactions of **4** is 1.9 pK_a units smaller than that for the corresponding reactions of **3**, i.e., $pK_a^{\circ} = 8.5$ and 6.6 for the reactions of **3** and **4**, respectively. This is consistent with the report that pK_a° for reactions of thiono compounds is *ca*. 2 pK_a units smaller than that for the reactions of their oxygen analogues, i.e., $pK_a^{\circ} = 9.5$ for the reactions of **1** and $pK_a^{\circ} =$ 7.5 for those of **2**.⁷ A similar result has been reported for pyridinolysis of **3** performed in 44 % aqueous ethanol (pK_a° = 8.0)^{19a} and for those of **4** performed in H₂O ($pK_a^{\circ} = 7.0$).^{19b}

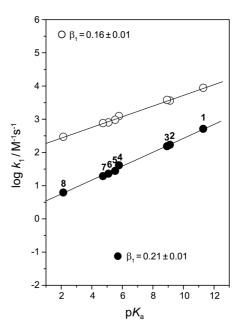
It has generally been understood that RDS changes from expulsion of the leaving group from T^{\pm} to its formation as the incoming amine becomes more basic than the leaving group by 4 to 5 pK_a units.¹⁻¹⁰ Since the pK_a of 2,4-dinitrophenol, the conjugate acid of the leaving group for substrates **3** and **4** is 4.1, pK_a^o of 8.5 for the reactions of **3** is normal. However, pK_a^o of 6.6 for the reactions of **4** is unusually small.

Gresser and Jencks have shown that pK_a^{o} for quinuclidinolysis of diaryl carbonates increases as the substituent in the nonleaving group changes from an electron-donating group (EDG) to an electron-withdrawing group (EWG).⁹ The explanation given is that an EWG in the nonleaving group retards departure of the leaving group from T^{\pm} (i.e., a decrease in k_2) but it accelerates expulsion of quinuclidine (i.e., increase in k_{-1}).⁹ Accordingly, it has been concluded that an EWG in the nonleaving group decreases the k_2/k_{-1} ratio and the decreased k_2/k_{-1} ratio causes an increase in $pK_a^{o,9}$ A similar conclusion has been drawn for pyridinolysis of 2,4-dinitrophenyl X-substituted benzoates and S-2,4dinitrophenyl X-substituted thiobenzoates.¹⁰ However, we have shown that pK_a^{o} and k_2/k_{-1} ratio are independent of the electronic nature of substituent X in the nonleaving group for aminolysis of 2,4-dinitrophenyl X-substituted benzoates²⁰ and benzenesulfonates.²¹

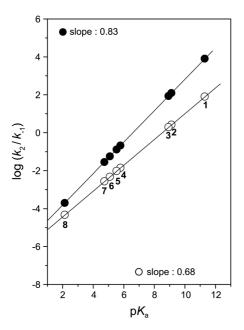
Dissection of k_N **into Microscopic Rate Constants** k_1 and k_2/k_{-1} **Ratio.** To investigate the effect of changing C=O by C=S on the microscopic rate constants, the k_N values have been dissected into k_1 and k_2/k_{-1} ratios associated with the reactions of **4**. The k_2/k_{-1} ratio has been calculated from eq. (2) using the β_1 , β_2 and pK_a° values shown in Figure 1. The k_1 values have been calculated from eq. (3) using the k_N values in Table 1 and the k_2/k_{-1} ratios calculated above. The k_1 and k_2/k_{-1} ratios calculated in this way are summarized in Table 2.

Table 2. Summary of Microscopic Rate Constants (k_1 and k_2/k_{-1} ratio) for Reactions of 2,4-Dinitrophenyl Phenyl Carbonate (**3**) and Thionocarbonate (**4**) with Z-Substituted Pyridines in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C^{*a*}

Z	pKa -	$k_1/M^{-1}s^{-1}$		k_2 / k_{-1}	
L		3	4	3	4
1.4-0-	11.30	8830	513	80.0	7960
2. 4-NMe ₂	9.12	3620	170	2.64	123
3. 4-NH ₂	8.93	3810	154	1.96	85.9
4. 3,4-Me ₂	5.78	1250	41.0	1.41×10^{-2}	2.09×10^{-1}
5.4-Me	5.53	962	27.9	9.56×10^{-3}	1.29×10^{-1}
6.3-Me	5.09	802	22.9	4.80×10^{-3}	5.58×10^{-2}
7. H	4.73	760	19.4	2.73×10^{-3}	2.80×10^{-2}
8. 3-Cl	2.14	296	6.24	4.73×10^{-5}	$1.99\times10^{-\!4}$


^{*a*}Data for the reactions of $\mathbf{3}$ were taken from ref. 8.

$$(\log k_2/k_{-1}) = (\beta_2 - \beta_1)(pK_a - pK_a^{o})$$
(2)


$$k_{\rm N} = k_1 k_2 / (k_{-1} + k_2) = k_1 / (k_{-1} / k_2 + 1)$$
(3)

As shown in Table 2, k_1 for the reactions of **4** decreases as the pyridine basicity decreases, e.g., it decreases from 513 $M^{-1}s^{-1}$ to 41.0 and 6.24 $M^{-1}s^{-1}$ as the p K_a decreases from 11.3 to 5.78 and 2.14, respectively. A similar result is shown for the reactions of **3**. However, the reactions of **4** result in much smaller k_1 values than those of **3**, although **4** is expected to be more electrophilic than **3** as mentioned in the preceding section.

The effect of pyridine basicity on k_1 is illustrated in Figure 2. The Brønsted-type plots are linear with β_1 values of 0.16 and 0.21 for the reactions of **3** and **4**, respectively, indicating that the k_1 for the reactions of **4** is slightly more sensitive to

Figure 2. Plots of log k_1 vs. pK_a for the pyridinolysis of 2,4dinitrophenyl phenyl carbonate **3** (O) and thionocarbonate **4** (\bullet) in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C. The identity of numbers is given in Table 2.

Figure 3. Plots of log k_2/k_{-1} vs. p K_a for the pyridinolysis of 2,4-dinitrophenyl phenyl carbonate **3** (O) and thionocarbonate **4** (\bullet) in 80 mol % H₂O/20 mol % DMSO at 25.0 ± 0.1 °C. The identity of numbers is given in Table 2.

the pyridine basicity than that for the reactions of **3**.

Table 2 shows that the k_2/k_{-1} ratio for the reactions of **4** decreases as the pyridine basicity decreases, e.g., it decreases from 7960 to 0.209 and 1.99×10^{-4} as the p K_a decreases from 11.3 to 5.78 and 2.14, in turn. A similar result is shown for the reactions of **3**. However, the k_2/k_{-1} ratio is larger for the reactions of **4** than for those of **3**. The effect of pyridine basicity on the k_2/k_{-1} ratio is illustrated in Figure 3. The plots are linear with slopes of 0.68 and 0.83 for the reactions of **3** and **4**, respectively, indicating that the k_2/k_{-1} ratio for the reactions of **4** is more sensitive to the pyridine basicity than that for the reactions of **3**.

Since the overlap between 2p and 3p orbitals in a C=S bond is not as strong as that between 2p orbitals in a C=O bond,^{11,12} the ability of C-S⁻ moiety in IV to form a C=S bond is weaker than that of C-O⁻ moiety in III to form a C=O bond. Thus, one might expect that k_2 and k_{-1} values would be smaller for the reactions of **4** than for those of **3**.

$$Z \xrightarrow{k_1 \text{OJ} k_2} V \xrightarrow{k_1 \text{OJ} k_2} V \xrightarrow{k_1 \text{OPh}} V \xrightarrow{k_2 \text{OPh}} V \xrightarrow{k_1 \text{OPh}} V \xrightarrow{k_2 \text{OPh}} V \xrightarrow{k_3 \text{OPh}} V \xrightarrow{k_4 \text{OPh}} V \xrightarrow{k_$$

As shown in Table 2 and Figure 3, the k_2/k_{-1} ratio is larger for the reactions of 4 than for those of 3. A larger k_2/k_{-1} ratio can be obtained by increasing k_2 and/or by decreasing k_{-1} . It is apparent that the reactions of 4 cannot result in a larger k_2 than those of 3 as mentioned above. Thus, one can propose that replacing C=O by C=S decreases k_{-1} more significantly than k_2 on the basis of the fact that the reactions of 4 result in larger k_2/k_{-1} ratios than those of 3, which is responsible for the smaller pK_a° found for the reactions of 4. Min Ji Son et al.

Conclusions

The current study has allowed us to conclude the following: (1) Thionocarbonate **4** is less reactive than its oxygen analogue **3**, although **4** is expected to be more electrophilic than **3**. (2) The reactions of **4** proceed through a stepwise mechanism with a change in RDS. (3) The reactions of **4** result in a smaller pK_a^{0} than the corresponding reactions of **3**. (4) Dissection of k_N into microscopic rate constants k_1 and k_2/k_{-1} ratio has revealed that the reactions of **4** result in smaller k_1 values but larger k_2/k_{-1} ratios than the corresponding reactions of **3**. (5) It is proposed that k_{-1} decreases more significantly than k_2 upon changing the C=O in **3** by C=S, which is responsible for the smaller pK_a^{0} found for the reactions of **4**.

Experimental Section

Materials. 2,4-Dinitrophenyl phenyl thionocarbonate (4) was prepared readily by reaction of phenyl chlorothionoformate with 2,4-dinitrophenol under presence of triethylamine in anhydrous ether. Other chemicals including the pyridines used were of the highest quality available. The reaction medium was H_2O containing 20 mol % DMSO due to low solubility of 4 in pure H_2O . Doubly glass distilled water was further boiled and cooled under nitrogen just before use.

Kinetics. The kinetic study was performed with a UV-vis spectrophotometer for slow reactions ($t_{1/2} \ge 10$ s) or with a stopped-flow spectrophotometer for fast reactions ($t_{1/2} < 10$ s) equipped with a constant temperature circulating bath to maintain the temperature in the reaction cell at 25.0 ± 0.1 °C. The reaction was followed by monitoring the appearance of the leaving 2,4-dinitrophenoxide ion. All the reactions were carried out under pseudo-first-order conditions in which pyridine concentrations were at least 20 times greater than the substrate concentration. The pyridine stock solution of ca. 0.2 M (except the most weakly basic 3-chloropyridine) was prepared by dissolving two equiv. of pyridine and one equiv. of standardized HCl solution to keep the pH constant in this self-buffered solution. The stock solution of the most weakly basic 3-chloropyridine was prepared without addition of HCl. All solutions were prepared freshly just before use under nitrogen and transferred by gas-tight syringes. Typically, the reaction was initiated by adding 5 μ L of a 0.02 M solution of the substrate in CH₃CN by a 10 µL syringe to a 10 mm quartz UV cell containing 2.50 mL of the thermostatted reaction mixture made up of solvent and aliquot of the pyridine stock solution.

Product Analysis. 2,4-Dinitrophenoxide (and/or its conjugate acid) was liberated quantitatively and identified as one of the products by comparison of the UV-vis spectrum at the end of reaction with the authentic sample under the experimental condition.

Acknowledgments. This research was supported by Basic Science Research Program through the National Research

Pyridinolysis of 2,4-Dinitrophenyl Phenyl Thionocarbonate

Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0075488). S. I. Kim is also grateful for the BK 21 Scholarship.

References

- (a) Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829. (b) Jencks, W. P. Chem. Rev. 1985, 85, 511-527. (c) Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. (d) Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapter 7. (e) Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
- (a) Castro, E. A. Pure. Appl. Chem. 2009, 81, 685-696. (b) Castro, E. A.; Gazitua, M.; Rios, P.; Tobar, P.; Santos, J. G. J. Phys. Org. Chem. 2009, 22, 443-448. (c) Castro, E. A.; Acuna, M.; Soto, C.; Trujillo, C.; Vasquez, B.; Santos, J. G. J. Phys. Org. Chem. 2008, 21, 816-822. (d) Castro, E. A.; Aliaga, M.; Santos, J. G. J. Phys. Org. Chem. 2008, 21, 271-278. (e) Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P.; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 129-135.
- (a) Oh, H. K.; Lee, H. Bull. Korean Chem. Soc. 2010, 31, 475-478. (b) Oh, H. K.; Hong, S. K. Bull. Korean Chem. Soc. 2009, 30, 2453-2456. (c) Oh, H. K.; Jeong, K. S. Bull. Korean Chem. Soc. 2009, 30, 253-256. (d) Oh, H. K.; Jeong, K. S. Bull. Korean Chem. Soc. 2008, 29, 1621-1623. (e) Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629.
- 4. (a) Sung, D. D.; Jang, H. M.; Jung, D. I.; Lee, I. J. Phys. Org. Chem. 2008, 21, 1014-1019. (b) Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430. (c) Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284. (d) Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. (e) Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244. (f) Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557-567.
- (a) Castro, E. A.; Galvez, A.; Leandro, L.; Santos, J. G. J. Org. Chem. 2002, 67, 4309-4315. (b) Castro, E. A.; Leandro, L.; Quesieh, N.; Santos, J. G. J. Org. Chem. 2001, 66, 6130-6135. (c) Castro, E. A.; Garcia, P.; Leandro, L.; Quesieh, N.; Rebolledo, A. Santos, J. G. J. Org. Chem. 2000, 65, 9047-9053. (d) Castro, E. A.; Saavedra, C. Santos, J. G; Umana, M. I. J. Org. Chem. 1999, 64, 5401-5407.
- (a) Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005.
 (b) Um, I. H.; Seck, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746.
- Um, I. H.; Han, H. J.; Baek, M. H.; Bae, S. Y. J. Org. Chem. 2004, 69, 6365-6370.
- 8. Um, I. H.; Son, M. J.; Kim, S. E.; Akhtar, K. Bull. Korean Chem.

Soc. 2010, 31, 1915-1919.

- Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980.
- (a) Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-3600. (b) Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672. (c) Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457. (d) Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536. (e) Castro, E. A.; Vivanco, M.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404. (f) Castro, E. A.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2003, 68, 8157-8161.
- 11. Hill, S. V.; Thea, S.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1983, 437-446.
- (a) Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. New J. Chem. 2001, 25, 313-317. (b) Oh, H. K.; Kim, S. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 2001, 1753-1757.
- Um, I. H.; Lee, J. Y.; Bae, S. Y.; Buncel, E. Can. J. Chem. 2005, 83, 1365-1371.
- 14. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306.
- (a) Pearson, R. G. J. Am. Chem. Soc. **1963**, 85, 3533-3539. (b) Ho, T. L. In Hard and Soft Acids and Bases; Pearson, R. G., Ed.; Academic Press: New York, 1977.
- Kwon, D. S.; Park, H. S.; Um, I. H. Bull. Korean Chem. Soc. 1999, 12, 93-97.
- (a) Castro, E. A.; Angel, M.; Arellano, D.; Santos, J. G. J. Org. Chem. 2001, 66, 6571-6575. (b) Castro, E. A.; Ruiz, M. G.; Salinas, S.; Santos, J. G. J. Org. Chem. 1999, 64, 4817-1820. (c) Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1997, 62, 4395-4397.
- (a) Castro, E. A.; Moodie, R. B. J. Chem. Soc., Chem. Commun. 1973, 828-829. (b) Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970.
- (a) Castro, E. A.; Magdalena A.; Claudia, S.; Carolina, T.; Barbara, V.; Santos, J. G. *J. Phys. Org. Chem.* **2008**, *21*, 816-822.
 (b) Castro, E. A.; Cubillos, M.; Margarita A.; Evangelisti, S.; Santos, J. G. *J. Org. Chem.* **2004**, *69*, 2411-2416.
- (a) Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. (b) Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. (c) Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. (d) Um, I. H.; Min, J. S.; Lee, H. W. Can. J. Chem. 1999, 77, 659-666.
- (a) Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444.
 (b) Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172.
 (c) Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185.