Communications

Organocatalytic Enantioselective α-Alkylation of Cyclic Ketones by S_N1-Type Reaction of Alcohols

Hyun Joo Lee, Seung Hee Kang, and Dae Young Kim*

Department of Chemistry, Soonchunhyang University, Asan, Chungnam 336-745, Korea. *E-mail: dyoung@sch.ac.kr Received January 2, 2011, Accepted January 28, 2011

Key Words : Enamine catalysis, Carbocations, Organocatalysis, Alkylation, Nucleophilic substitution

The α -alkylation of carbonyl compounds is one of the fundamental C-C bond forming transformations in synthetic organic chemistry.¹ In 2004, List presented the first catalytic asymmetric intramolecular α -alkylation of aldehydes using chiral secondary amines as catalysts.² Melchiorre and Cozzi have independently reported S_N1-type α -alkylation of aldehydes with stable carbocations generated in situ from diarylmethanol and sulfonylindole derivatives as alkyl donors to proceed through enamine catalysis.³ More recently, Luo reported the direct asymmetric intermolecular α -alkylation of ketones using pyrrolidene-derived functionalized ionic liquids.⁴ However, a highly enantioselective α -alkylation of ketones through enamine catalysis remains elusive.

As part of research program related to the development of synthetic methods for the enantioselective construction of stereogenic carbon centers,⁵ we recently reported the catalytic α -alkylation of active methines with high enantioselectivities promoted by chiral phase transfer catalysts.⁶ Herein, we wish to describe the direct enantioselective α -alkylation of cyclohexanone derivatives with bis(4-dimethylaminophenyl)methanol, which can form stabilized carbocation under acidic condition.⁷

To determine suitable reaction conditions for the catalytic enantioselective α -alkylation of cyclic ketones, we initially investigated the reaction system with cyclohexanone (1a)

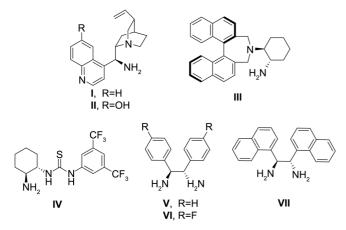


Figure 1. Structure of chiral primary amine catalysts.

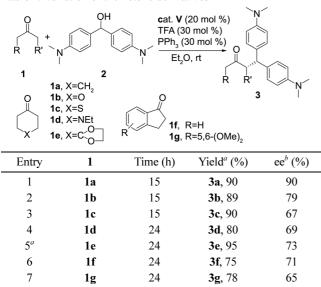

with bis(4-dimethylaminophenyl)methanol (2) in the presence of 20 mol % of chiral primary amine organocatalyst and TFA (30 mol %) in diethyl ether at room temperature. We first examined the impact of the structure of catalysts **I-VII** (Fig. 1) on enantioselectivity (Table 1, entries 1-7). The best results have been obtained with catalyst V (Table 1, entry 5). A survey of the reaction media indicated that many

Table 1. Optimazation of the reaction conditions

0 1a	+N_	0H	cat. acid	(20 mol %) (30 mol %) vent, rt		N
Entry	Cat.	Solvent	Acid	Time (h)	Yield ^a (%)	ee^{b} (%)
1	Ι	Et ₂ O	TFA	13	91	51
2	II	Et_2O	TFA	22	70	61
3	III	Et_2O	TFA	22	26	11
4	IV	Et_2O	TFA	5 d	60	5
5	V	Et_2O	TFA	10	90	81
6	VI	Et_2O	TFA	20	90	53
7	VII	Et_2O	TFA	20	85	53
8	V	THF	TFA	24	84	80
9	V	PhMe	TFA	24	90	79
10	V	DCM	TFA	24	90	64
11	V	MeCN	TFA	24	85	37
12	V	MeOH	THF	24	95	43
13	V	Et_2O	(+) - CSA	3 d	70	55
14	V	Et_2O	(-) - CSA	3 d	50	45
15	V	Et_2O	fumaric acid	48	60	43
16	V	Et_2O	maleic acid	20	90	75
17	V	Et_2O	oxalic acid	4 d	20	10
18	V	Et_2O	picric acid	4 d	20	10
19	V	Et_2O	DNBS	3 d	80	35
20 ^c	V	Et_2O	TFA	10	90	90

^{*a*}Isolated yield of **3a**. ^{*b*}Enantiomeric excess was determined by HPLC analysis using a Chiralpak AD-H column. ^{*c*}PPh₃ (30 mol %) was added as co-additive.

Table 2. Variation of the ketone derivatives

^aIsolated yield. ^bEnantiomeric excess was determined by HPLC analysis using chiral columns (Chiralpak AD-H for **3a**, **3c**, **3f**, IB for **3b**, **3e**, IA for **3d**).

common solvents, such as THF, toluene, dichloromethane, MeCN, and MeOH (Table 1, entries 5 and 8-12), were well tolerated in this α -alkylation reaction with moderate to high enantioselectivities. The best results (90% yield and 81% ee) were achieved when the reaction was conducted in diethyl ether (Table 1, entry 5). We examined our investigations by examining the reactivity and selectivity with organocatalyst V in diethyl ether in the presence of different acids, such as TFA, camphorsulfonic acid, fumaric acid, maleic acid, oxalic acid, picric acid, and 2,4-dinitrobenzoic acid as additives (Table 1, entries 5 and 13-20). The best results (90% yield and 90% ee) were achieved when the reaction was conducted in 30 mol % of TFA with 30 mol % of PPh₃ (Table 1, entry 20).

We then explored the possibility of using wide range of cyclic ketones 1 with bis(4-dimethylaminophenyl)methanol (2) under the optimized reaction condition.⁸ As it can be seen by the results summarized in Table 2, the corresponding α -alkylated ketones **3a-g** were obtained in excellent yields and high enantioselectivities. The cyclic ketones **1a-e** and indanone derivatives **1f-g** reacted with bis(4-dimethylaminophenyl)methanol (2) to give the corresponding α -aminated ketones **3a-g** in 75-95% yields and 65-90 ee (Table 2). The stereochemistry of **3** was determined by comparing chiral HPLC, optical rotation, and ¹H NMR data with literature value.⁴

In conclusion, we have developed an efficient catalytic enantioselective α -alkylation of ketones with bis(4-dimethylaminophenyl)methanol using (1*S*,2*S*)-1,2-diphenyl-1,2-ethanediamine. The desired α -alkylated ketones were obtained in high yields and high enantioselectivities (65-90% ee) for various substrates. Further details and application of this asymmetric α -alkylation of ketones with stable carbocations will be presented in due course.

References and Notes

- (a) Caine, D. In *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon Press: New York, 1991; Vol 2, Cahpter 1.1, and references therein. (b) Evans, D. A. In *Asymmetric Synthesis*; Morrison, J. D., Ed.; Academic Press: New York, 1984; Vol 3, pp 1-110. (c) Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. *Tetrahedron* 2002, *58*, 2253.
- (a) Vignola, N.; List, B. J. Am. Chem. Soc. 2004, 126, 450. For a mechanistic insight, see: (b) Fu, A.; List, B.; Thiel, W. J. Org. Chem. 2006, 71, 320.
- (a) Shaikh, R. R.; Mazzanti, A.; Petrini, M.; Bartoli, G.; Melchiorre, P. Angew. Chem. Int. Ed. 2008, 47, 8707. (b) Cozzi, P. G.; Zoli, L. Angew. Chem. Int. Ed. 2008, 47, 4162. (c) Cozzi, P. G.; Benfatti, F.; Zoli, L. Angew. Chem. Int. Ed. 2009, 48, 1313.
- (a) Zhang, L.; Cui, L.; Li, X.; Li, J.; Luo, S.; Cheng, J.-P. *Eur. J. Org. Chem.* **2010**, 4876. (b) Zhang, L.; Cui, L.; Li, X.; Li, J.; Luo, S.; Cheng, J.-P. *Chem. Eur. J.* **2010**, *16*, 2045.
- 5. (a) Kim, D. Y.; Huh, S. C.; Kim, S. M. Tetrahedron Lett. 2001, 42, 6299. (b) Kim, D. Y.; Huh, S. C. Tetrahedron 2001, 57, 8933. (c) Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4, 545. (d) Kim, S. M.; Kim, H. R.; Kim, D. Y. Org. Lett. 2005, 7, 2309. (e) Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4565. (f) Mang, J. Y.; Kwon, D. G.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 259. (g) Kang, Y. K; Cho, M. J.; Kim, S. M.; Kim, D. Y. Synlett 2007, 1135. (h) Lee, J. H.; Bang, H. T.; Kim, D. Y. Synlett 2008, 1821. (i) Kim, S. M.; Lee, J. H.; Kim, D. Y. Synlett 2008, 2659. (j) Jung, S. H.; Kim, D. Y. Tetrahedron Lett. 2008, 49, 5527. (k) Kang, S. H.; Kang, Y. K.; Kim, D. Y. Tetrahedron 2009, 65, 5676. (1) Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74, 5734. (m) Lee, J. H.; Kim, D. Y. Adv. Synth. Catal. 2009, 351, 1779. (n) Kwon, B. K.; Kim, S. M.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 759. (o) Oh, Y.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4674. (p) Moon, H. W.; Cho, M. J.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4896. (q) Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74, 5734. (r) Lee, J. H.; Kim, D. Y. Adv. Synth. Catal. 2009, 351, 1779. (s) Kim, E. J.; Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1437. (t) Kang, S. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1439. (u) Kwon, B. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2009, 30, 1441. (v) Kang, Y. K.; Kim, D. Y. Curr. Org. Chem. 2010, 14, 917. (w) Kang, S. H.; Kim, D. Y. Adv. Synth. Catal. 2010, 352, 2783. (x) Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847. (y) Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860. (z) Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2010, 51, 2906.
- 6. Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org. Chem. 2004, 69, 6897.
- 7. Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.
- 8. General procedure for the organocatalytic α -alkylation of cyclic ketones 1: To a stirred solution of bis(4-dimethylaminophenyl)methanol (2, 81.9 mg, 0.3 mmol), catalyst V (12.6 mg, 0.06 mmol), triphenyl phosphine (23.4 mg, 0.09 mmol), and TFA (6.6 mL, 0.09 mmol) in diethyl ether (1.2 mL) was added ketones 1 (1.5 mmol) at room temperature. Reaction mixture was stirred for 15-24 h at room temperature, concentrated, and purified by flash column chromatography (EtOAc/hexane: 1/3) to afford the alkylated product 3.