DOI QR코드

DOI QR Code

Proton Transfer in Biomolecules Facilitated by Water: Quantum Chemical Investigations

  • Lee, Sung-Yul (Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University)
  • Received : 2011.01.26
  • Accepted : 2011.02.24
  • Published : 2011.04.20

Abstract

We present a brief review for theoretical/computational studies of proton transfer processes of some simple biomolecules promoted by microsolvating water molecules. Focus is given on the relative stability of the canonical vs. zwitterionic forms of amino acids, tautomeric forms of the DNA base adenine, and the biologically active vs. inactive forms of nicotine. The biochemical implications of these findings are also discussed.

Keywords

References

  1. Alessandro, B., A.; Scorrano, G. Acc. Chem. Res. 2000, 33, 609. https://doi.org/10.1021/ar990149j
  2. Hibbert, F. Acc. Chem. Res. 1984, 17, 115. https://doi.org/10.1021/ar00099a006
  3. Peters, K. S. Acc. Chem. Res. 2009, 42, 89. https://doi.org/10.1021/ar8001156
  4. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper & Row: New York, 1987.
  5. Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry; University Science Books: Sausalito, CA, 2006.
  6. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
  7. Blom, M. N.; Compagnon, I.; Polfer, N. C.; Helden, G. V.; Meijer, G.; Suhai, S.; Paizs, B.; Oomens, J. J. Phys. Chem. A 2007, 111, 7309. https://doi.org/10.1021/jp070211r
  8. Xu, S.; Niles, J. M.; Bowen, K. H. J. Chem. Phys. 2003, 119, 10696. https://doi.org/10.1063/1.1620501
  9. Aikens, C. M.; Gordon, M. S. J. Am. Chem. Soc. 2006, 128, 12835. https://doi.org/10.1021/ja062842p
  10. Desfrancois, C.; Carles, S.; Schermann, J. P. Chem. Rev. 2000, 100, 3943. https://doi.org/10.1021/cr990061j
  11. Zwier, T. S. J. Phys. Chem. A 2001, 105, 8827. https://doi.org/10.1021/jp011659+
  12. Snoek, L. C.; Robertson, E. G.; Kroemer, R. T.; Simons, J. P. Chem. Phys. Lett. 2001, 321, 49.
  13. Compagnon, I.; Hagemeister, F. C.; Antoine, R.; Rayane, D.; Broyer, M.; Dugourd, P.; Hudgins, R. R.; Jarrold, M. F. J. Am. Chem. Soc. 2001, 123, 8440. https://doi.org/10.1021/ja010965y
  14. Ahn, D.-S.; Kang, A.-R.; Lee, S.; Kim, B.; Kim, S. K.; Neuhauser, D. J. Chem. Phys. 2005, 122, 084310. https://doi.org/10.1063/1.1850893
  15. Park, S.-W.; Im, S.; Lee, S.; Desfrancois, C. Int. J. Quantum Chem. 2007, 107, 1316. https://doi.org/10.1002/qua.21255
  16. Ahn, D.-S.; Park, S.-W.; Jeon, I.-S.; Lee, M.-K.; Kim, N.-H.; Han, Y.-H.; Lee, S. J. Phys. Chem. B 2003, 107, 14109. https://doi.org/10.1021/jp031041v
  17. Park, S.-W.; Ahn, D.-S.; Lee, S. Chem. Phys. Lett. 2003, 371, 74. https://doi.org/10.1016/S0009-2614(03)00221-5
  18. Jeon, I.-S.; Ahn, D.-S.; Park, S-.W.; Lee, S.; Kim, B. Int. J. Quantum Chem. 2005, 101, 55. https://doi.org/10.1002/qua.20269
  19. Jeon, I.-S.; Ahn, D.-S.; Park, S.-W.; Lee, S.; Kim, S. K. Chem. Phys. Lett. 2005, 403, 72. https://doi.org/10.1016/j.cplett.2004.12.114
  20. Csaszar, A. G.; Perczel, A. Progr. Biophys. Mol. Biol. 1999, 71, 243. https://doi.org/10.1016/S0079-6107(98)00031-5
  21. Xu, S. J.; Zheng, W. J.; Radisic, D.; Bowen, K. H. J. Chem. Phys. 2005, 122, 091103. https://doi.org/10.1063/1.1864952
  22. Snoek, L. C.; Kroemer, R. T.; Hockridge, M. R.; Simons, J. P. Phys. Chem. Chem. Phys. 2001, 3, 1819. https://doi.org/10.1039/b101296g
  23. Spinor, J.; Sulkes, M. J. Chem. Phys. 1993, 98, 9389. https://doi.org/10.1063/1.465084
  24. Im, S.; Jang, S.-W.; Lee, S.; Lee, Y.; Kim, B. J. Phys. Chem. A 2008, 112, 9767. https://doi.org/10.1021/jp801933y
  25. Fernandez-Ramos, A.; Smedarchina, Z.; Siebrand, W.; Zgierski, M. Z. J. Chem. Phys. 2000, 113, 9714. https://doi.org/10.1063/1.1322084
  26. Lemoff, A. S.; Bush, M. F.; Williams, E. R. J. Phys. Chem. A 2005, 109, 1903. https://doi.org/10.1021/jp0466800
  27. Hu, C. H.; Shen, M.; Schafer III, H. F. J. Am. Chem. Soc. 1993, 115, 2923. https://doi.org/10.1021/ja00060a046
  28. Bandyopadhyay, P.; Gordon, M. S.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 2002, 116, 5023. https://doi.org/10.1063/1.1433503
  29. Julian, R. R.; Jarrold, M. F. J. Phys. Chem. A 2004, 108, 10861. https://doi.org/10.1021/jp047369l
  30. Jensen, J. H.; Gordon, M. S. J. Am. Chem. Soc. 1995, 117, 8159. https://doi.org/10.1021/ja00136a013
  31. Kim, J.-Y.; Schermann, J. P.; Lee, S. Bull. Korean Chem. Soc. 2010, 31, 59. https://doi.org/10.5012/bkcs.2010.31.01.059
  32. Tortonda, F. R.; Pascual-Ahuir, J. L.; Silla, E.; Tunon, I. Chem. Phys. Lett. 1996, 260, 21. https://doi.org/10.1016/0009-2614(96)00839-1
  33. Chapo, C. J.; Paul, J. B.; Provencal, R. A.; Roth, K.; Saykally, R. J. J. Am. Chem. Soc. 1998, 120, 12956. https://doi.org/10.1021/ja982991a
  34. Gdanitz, R. J.; Cardoen, W.; Windus, T. L.; Simons, J. J. Phys. Chem. A 2004, 108, 515. https://doi.org/10.1021/jp036852d
  35. Julian, R. R.; Hodyss, R.; Beauchamp, J. L. J. Am. Chem. Soc. 2001, 123, 3577. https://doi.org/10.1021/ja003105a
  36. Jockusch, R. A.; Price, W. D.; Williams, E. R. J. Phys. Chem. A 1999, 103, 9266. https://doi.org/10.1021/jp9931307
  37. Bush, M. F.; O'Brien, J. T.; Prell, J. S.; Saykally, R. J.; Williams, E. R. J. Am. Chem. Soc. 2007, 129, 1612. https://doi.org/10.1021/ja066335j
  38. Rak, J.; Skurski, P.; Simons, J.; Gutowski, M. J. Am. Chem. Soc. 2001, 123, 11695. https://doi.org/10.1021/ja011357l
  39. Ling, S.; Yu, W.; Huang, Z.; Lin, Z.; Haranczyk, M.; Gutowski, M. J. Phys. Chem. A 2006, 110, 12282. https://doi.org/10.1021/jp0645115
  40. Laxer, A.; Major, D. T.; Gottlieb, H. E.; Fischer, B. J. Org. Chem. 2001, 66, 5463. https://doi.org/10.1021/jo010344n
  41. Chenon, M. T.; Pugmire, R. J.; Grant, D. M.; Panzica, R. P.; Townsend, L. B. J. Am. Chem. Soc. 1975, 97, 4636. https://doi.org/10.1021/ja00849a028
  42. Kim, H.-S.; Ahn, D.-S.; Chung, S.-Y.; Kim, S. K.; Lee, S. J. Phys. Chem. A 2007, 111, 8007. https://doi.org/10.1021/jp074229d
  43. Hanus, M.; Klabelac, M.; Rejnek, J.; Ryjacek, F.; Hobza, P. J. Phy. Chem. B 2004, 108, 2087. https://doi.org/10.1021/jp036090m
  44. Graton, J.; Berthelot, M.; Gal, J. F.; Girard, S.; Laurence, C.; Lebreton, J.; Le Questel, J. Y.; Maria, P. C.; Naus, P. J. Am. Chem. Soc. 2002, 124, 10552. https://doi.org/10.1021/ja017770a
  45. Seydou, M.; Gregoire, G.; Liquier, J.; Ortega, J. M.; Schermann, J. P.; Desfrancois, C. J. Am. Chem. Soc. 2008, 130, 4187. https://doi.org/10.1021/ja710040p
  46. Amiri, S.; Sansom, M.; Biggin, P. Protein Eng. Des. Sel. 2007, 20, 353. https://doi.org/10.1093/protein/gzm029
  47. Gaigeot, M.-P.; Cimas, A.; Seydou, M.; Kim, J.-Y.; Lee, S.; Schermann, J.-P. J. Am. Chem. Soc. 2010, 132, 18067. https://doi.org/10.1021/ja103759v

Cited by

  1. Gas-phase salt bridge interactions between glutamic acid and arginine vol.15, pp.38, 2013, https://doi.org/10.1039/c3cp52508b
  2. Effects of Microsolvating Water on the Stability of Zwitterionic vs. Canonical Diglycine vol.35, pp.3, 2011, https://doi.org/10.5012/bkcs.2014.35.3.798