DOI QR코드

DOI QR Code

Effect of Pine (Pinus densiflora) Needle Extracts on Antioxidant Activity and Proliferation of Osteoclastic RAW 264.7 Cells

적송잎 추출물이 항산화 활성 및 파골세포의 증식에 미치는 영향

  • Received : 2011.03.09
  • Accepted : 2011.04.08
  • Published : 2011.04.30

Abstract

Pine needles have long been used as a traditional health-promoting medicinal food in Korea. This study was carried out to investigate the effects of pine needle extracts on the antioxidant activity, and proliferation of osteoclastic RAW 264.7 cells. Pine needle extracts were examined using hot water, ethanol, hexane, hot water-ethanol, and hot water-hexane. The effects of the pine needle extracts were examined by comparing the results with that of a commercial agents, proanthocyanidin. Analysis of each extract indicated that hot water-ethanol and ethanol extracts contained the highest total polyphenol concentrations. The hot water-ethanol and ethanol extracts also showed relatively the highest SOD-like activity. The proliferation of osteoclastic RAW 264.7 cells treated with pine needle extracts was decreased by lower than 70%. In addition, the hot water and ethanol extracts of pine needle significantly reduced the number of tartrate-resistant acid phosphatase-positive ($TRAP^+$) multinucleated cells from osteoclatic RAW 264.7 cells. These results indicate that pine needle extracts had an anabolic effect on bone through the promotion of osteoclast differentiation, suggesting that they could be used for the treatment of common metabolic bone diseases.

아시아 지역 널리 자생하고 있는 소나무는 항암, 조골세포의 콜라겐 합성 등 다양한 연구결과가 보고된 바 있으나, 항산화 활성에 따른 파골세포의 증식 및 분화에 대한 연구는 미비한 실정이다. 따라서 본 연구에서는 적송잎 추출물별 항산화 활성과 RAW 264.7 세포를 이용하여 적송잎 추출물이 파골세포의 증식과 TRAP 활성에 미치는 영향에 대해 검토하였다. 적송잎 추출물의 총 폴리페놀 함량을 측정한 결과, 열수에탄올 추출물이 140.54 mg/g으로 가장 높은 함량을 나타내었으며, 그 다음은 에탄올 추출물, 열수 추출물, 열수헥산 추출물, 헥산 추출물 순으로 나타났다. SOD 유사 활성을 검색한 결과, 열수, 에탄올 및 열수에탄올 추출물이 proanthocyanidin의 47.31%보다 높은 SOD 유사활성을 보였다. MTT assay에 의한 파골세포의 생존율을 측정한 결과, 에탄올 추출물 경우 $1{\mu}g$/mL의 농도에서 54.04%로 가장 낮은 생존율을 나타내었고 적송잎 헥산 추출물 또한 70% 이하의 생존율을 나타내어, 각 추출물 간의 생존 비율에 차이는 있으나 모든 적송잎 추출물에 있어 파골세포의 성장을 억제하는 결과가 나타났다. 적송잎 추출물의 파골세포 분화억제 효과를 알아보기 위해 TRAP staining 한 결과, 모든 추출물에서 대조군보다 낮은 TRAP 활성이 나타났다. 특히 열수 및 에탄올 추출물의 경우, $1{\mu}g$/mL의 낮은 농도에서 각각 67.8 및 66.3%로 파골세포 분화를 감소시켰으나, 헥산 추출물은 약 80%의 분화 감소율을 나타내었다. $100{\mu}g$/mL의 고농도 첨가군에서는 오히려 에탄올 추출물의 파골세포 분화 감소율이 낮게 나타나, 저농도에서의 효과가 우수한 것으로 나타났다. 따라서 항산화 활성을 가지는 적송잎 추출물이 파골세포의 증식과 분화를 억제하여 골흡수 억제에 효과를 준다는 것이 확인되었으며, 구체적인 기작 연구와 in vivo 연구가 병행된다면 노화 및 골다공증 예방과 관련된 기능성 천연소재로 개발이 가능하리라 사료된다.

Keywords

References

  1. Masadi H, Sakaki S, Atsumi T, Sakurai H. 1995. Activeoxygen scavenging activity of plant extract. Biol Pharm Bull 18: 162-166. https://doi.org/10.1248/bpb.18.162
  2. Beckman KB, Ames BN. 1998. The free radical theory of aging matures. Physiol Reviews 78: 547-581.
  3. Halliwell B, Gutteridge JM. 1986. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246: 501-514. https://doi.org/10.1016/0003-9861(86)90305-X
  4. Jung S, Kim HW, Yoon S. 1999. Analysis of antioxidant nutrients in green yellow vegetable juice. J Food Sci Biotech 31: 880-886.
  5. Simic MG. 1988. Mechanisms of inhibition of free radical processed in mutagenesis and carcinogenesis. Mutat Res 202: 386-399.
  6. Ito M, Ohishi K, Yoshida Y, Yokoi W, Sawada H. 2003. Antioxidative effects of lactic and bacteria on the colonic mucosa of iron-overloaded mice. J Agric Food Chem 51: 4456-4460. https://doi.org/10.1021/jf0261957
  7. Lin MY, Yen CL. 1999. Inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidibacterium longum. J Agric Food Chem 47: 3661-3664. https://doi.org/10.1021/jf981235l
  8. Ames BN, Shigenaga MK, Hagen TM. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Matl Acad Sci USA 90: 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  9. Branen AL. 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc 52: 59-63. https://doi.org/10.1007/BF02901825
  10. Cort WM. 1984. Antioxidant activity of tocopherols and ascorbyl palmitate and ascorbic acid and their mode of action. J Am Oil Chem Soc 51: 321-325.
  11. Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H. 2001. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288: 275-279. https://doi.org/10.1006/bbrc.2001.5747
  12. Maggio D, Barabani M, Pierandrei M, Polidori C, Catani M, Mecocci P, Senin U, Pacifici R, Cherubini A. 2003. Morked decrease in plasma antioxidants in aged osteoporotic women: Results of a cross-sectional study. J Clin Endocrinol Metab 88: 1523-1527. https://doi.org/10.1210/jc.2002-021496
  13. Morton D, Barrett-Conner EL, Schneider DL. 2001. Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res 16: 135-140. https://doi.org/10.1359/jbmr.2001.16.1.135
  14. Lee JW, Lee IS. 2004. Effects of Rubus coreanus Miquel extracts on the activity and differentiation of MC3T3-E1 osteoblastic cell. J Life Science 14: 967-974. https://doi.org/10.5352/JLS.2004.14.6.967
  15. Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Qiu W, Rattan A, Scully S, Fletcher F, Juan T, Kelley M, Burgess TL, Boyle WJ, Polverino AJ. 2000. Osteopotegerin ligand modulates murine osteoclast survival in vitro and in vivo. J Am Pathol 157: 435-448. https://doi.org/10.1016/S0002-9440(10)64556-7
  16. Kwak HB, Lee SW, Li YJ, Kim YA, Han SY, Jhon GJ, Kim HH, Lee JH. 2004. Inhibition of osteoclast differentiation and bone resorption by a novel lysophosphatidylcholine derivative, SCOH. Biochem Pharmacol 67: 1239-1248. https://doi.org/10.1016/j.bcp.2003.10.032
  17. Nakagawa H, Wachi M, Woo JT, Kato M, Kasai S, Takahashi F, Lee IS, Nagai K. 2002. Fenton reaction is primarily involved in a mechanism of (-)-epigallocatechin- 3-gallate to induce osteoclastic cell death. Biochem Biophysicol Res Commun 292: 94-101. https://doi.org/10.1006/bbrc.2002.6622
  18. Park GY, Lee HS, Hwang ID, Jung HS. 2006. The functional effects of fermented pine needle extract. Korean J Biotechnol Bioeng 21: 376-383.
  19. Lee HJ. 2004. Studies on biological activities of the pineneedle distilled water extract. MS thesis. Kagnwon National University, Gangwon, Korea.
  20. Lee OH, Kim KY, Jang MK, You KH, Kim SG, Kim MH, Lee SH. 2008. Evaluation of proanthocyanidin contents in total polyphenolic compounds of pine (Pinus densiflora) needle extracts and their antioxidative activities. J Life Science 18: 213-219. https://doi.org/10.5352/JLS.2008.18.2.213
  21. Hsu T, Sheu S, Liaw E, Wang T, Lin C. 2005. Anti-oxidant activity and effect of Pinus morrisonicola Hay. on the survival of leukemia cell line U937. Phytomedicine 12: 663-669. https://doi.org/10.1016/j.phymed.2004.03.013
  22. Kang SR, Kim YK, Kim SG, Lee SH, Kim MH. 2009. The effect of pine (Pinus densiflora) needle extracts on blood flow and serum lipid improvement. J Life Science 19: 508-513. https://doi.org/10.5352/JLS.2009.19.4.508
  23. Kim EJ, Choi KP, Ham SS, Kang HY. 1998. Inhibitory effect of pine needle extracts on the chemical induces mutagenicity. Korean J Food Sci Technol 30: 450-455.
  24. Lee YH, Choi YS, Lee SY. 1996. The cholesterol-lowering effects of the extract from Pinus strobes in chickens. J Korean Soc Food Nutr 25: 188-192.
  25. Choi EJ, Lee C, Rhim TJ, Cha BC, Park HJ. 1997. Antimicrobial activities of pine needle (Pinus densiflora) extract. Korean J Appl Microbiol Biotechnol 2: 293-297.
  26. Chung YJ, Bae MW, Chung MI, Lee JS, Chung MS. 2002. Cytotoxic effect of the distilled pine-needle extracts on several cancer cell lines in vitro. J Korean Soc Food Sci Nutr 31: 2-13. https://doi.org/10.3746/jkfn.2002.31.4.691
  27. Jeon MH, Kim YK, Park YS, Hwang HJ, Kim SG, Lee SH, Choi IS, Kim MH. 2010. Effect of pine (Pinus densiflora) needle extracts on synthesis of collagen in osteoblastic MC3T3-E1 cells. J Life Science 20: 607-613. https://doi.org/10.5352/JLS.2010.20.4.607
  28. Chandler SF, Dodds JH. 1983. The effect of phosphate, nitrogen and sucrose on the production of phenolins and solasidine in callus cultures of Solanum laciniatum. Plant Cell Rep 2: 105-108. https://doi.org/10.1007/BF00270178
  29. Marklund S, Marklund G. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 468-474.
  30. Choi KH. 2006. The effects of mulberry fruits on the biological activity in ovariectomized rats. MS Thesis. Silla University, Busan, Korea.
  31. Bryan DM, Murnaghan J, Jones KS, Bowley SR. 2000. Iron superoxide dismutase expression in transgenic alfalfa increase winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiol 122: 1427-1438. https://doi.org/10.1104/pp.122.4.1427
  32. Grasbon T, Grasbon-Frodl EM, Juliusson B, Epstein C, Brundin P, Kampik A, Ehinger B. 1999. CuZn superoxide dismutase transgenic retinal transplants. Graefes Arch Clin Exp Ophthalmol 237: 336-341. https://doi.org/10.1007/s004170050241
  33. Shin JM, Park CK, Shin EJ, Jo TH, Hwang IK. 2008. Effects of Scutellaria radix extracts on osteoblast differentiation and osteoclast formation. Korean J Food Sci Technol 40: 674-679.
  34. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. 1999. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20: 345-357. https://doi.org/10.1210/er.20.3.345
  35. Martin PM, Horwitz KB, Ryan KS, Mcguire WL. 1978. Phytoestrogens interaction with estrogen receptors in human breast cancer cells. Endocrinology 103: 1860-1867. https://doi.org/10.1210/endo-103-5-1860
  36. Le Bail JC, Varnat F, Nicolas JC, Habrioux G. 1998. Estrogenic and antiproliferative activities on MCF-7 human breast cancer cells by flavonoids. Cancer Lett 130: 209-216. https://doi.org/10.1016/S0304-3835(98)00141-4
  37. Mok SK, Shin HS. 1996. The effects of prostaglandin and dibutyryl cAMP on osteoblastic cell activity and osteoclast generation. J Wonkwang Dental Res Ins 6: 43-62.

Cited by

  1. Effects of White Habiscus syriacus L. Flower Extracts on Antioxidant Activity and Bone Resorption Inhibition vol.23, pp.3, 2015, https://doi.org/10.7783/KJMCS.2015.23.3.190
  2. Yield and Quality Characteristics of Ginseng's First Byproducts vol.19, pp.5, 2011, https://doi.org/10.7783/KJMCS.2011.19.5.313
  3. Anti-wrinkle and Skin turnover Improvement Effects of Niacinamide-dipeptide Convergence vol.16, pp.2, 2018, https://doi.org/10.20402/ajbc.2017.0197