DOI QR코드

DOI QR Code

Dielectric and Piezoelectric Properties of (K0.5Na0.5) (Nb0.97Sb0.03)O3 Ceramics Doped with K4CuNb8O23

  • Lee, Sang-Ho (Department of Electrical Engineering, Semyung University) ;
  • Lee, Kab-Soo (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University) ;
  • Jeong, Yeong-Ho (Department of Electrical Engineering, Chungju National University) ;
  • Yoon, Hyun-Sang (Department of Train Electricity, Kookje College)
  • Received : 2011.02.18
  • Accepted : 2011.03.17
  • Published : 2011.04.25

Abstract

In this study, $(K_{0.5}Na_{0.5})(Nb_{0.97}Sb_{0.03})O_3+0.9$ mol% $K_{5.4}Cu_{1.3}Ta_{10}O_{29}+x$ mol% $K_4CuNb_8O_{23}$ (x = 0, 0.2, 0.6, 0.8) ceramics were prepared by a conventional mixed oxide method. Their microstructure and electric properties were investigated. The secondary phase was made by virtue of $K_4CuNb_8O_{23}$ (KCN) addition in the $(K_{0.5}Na_{0.5})(Nb_{0.97}Sb_{0.03})O_3$ system ceramics. However, the sinterability of the ceramics increased with increasing $K_4CuNb_8O_{23}$ content. At the 0.6 mol% $K_4CuNb_8O_{23}$ added composition ceramics sintered at $1,060^{\circ}C$, kp and $d_{33}$ showed the optimum values of 0.39 and 145 pC/N, respectively, suitable for piezoelectric actuator application.

Keywords

References

  1. M. L. McLaughlin, J. P. Hespanha, and G. S. Sukhatme, Touch in Virtual Environments: Haptics and the Design of Interactive Systems (Prentice Hall, Upper Saddle River, NJ, 2002).
  2. Y. Guo, K. Kakimoto, and H. Ohsato, Solid State Commun. 129, 279 (2004) [DOI: 10.1016/j.ssc.2003.10.026].
  3. T. Kimura, T. Yoshimoto, N. Iida, Y. Fujita, and T. Yamaguchi, J. Am. Ceram. Soc. 72, 85 (1989) [DOI: 10.1111/j.1151-2916.1989.tb05958.x].
  4. F. A. Geldard, Science 131, 1583 (1960) [DOI: 10.1126/science.131.3413.1583].
  5. K. Topi and J. Linjama, First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (Pisa, Italy 2005) p. 471. [DOI: 10.1109/WHC.2005.103].
  6. J. A. Horn, S. C. Zhang, U. Selvaraj, G. L. Messing, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 82, 921 (1999) [DOI: 10.1111/j.1151-2916.1999.tb01854.x].
  7. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, and S.-i. Hirano, J. Am. Ceram. Soc. 88, 1190 (2005) [DOI: 10.1111/j.1551-2916.2005.00229.x].

Cited by

  1. Dielectric and piezoelectric properties of (K0.5Na0.5)(Nb0.97Sb0.03)O3 ceramics doped with Bi2O3 vol.29, pp.2, 2012, https://doi.org/10.1007/s10832-012-9744-1
  2. Effects of Zn Substitution on Dielectric and Piezoelectric Properties of (Na0.54K0.46)0.96Li0.04(Nb0.90Ta0.10)O3Ceramics vol.51, pp.9S2, 2012, https://doi.org/10.7567/JJAP.51.09MD12
  3. Effect of sintering temperature on piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3+0.01wt%ZnO ceramics vol.28, pp.2-3, 2012, https://doi.org/10.1007/s10832-012-9686-7
  4. Electrical properties and impedance spectroscopy of pure and copper-oxide-added potassium sodium niobate ceramics vol.59, pp.10, 2012, https://doi.org/10.1109/TUFFC.2012.2438
  5. Effect of Particle Size on the Dielectric and Piezoelectric Properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3Lead-free Piezoelectric Ceramics vol.16, pp.4, 2015, https://doi.org/10.4313/TEEM.2015.16.4.179
  6. lead-free relaxor ferroelectrics ceramics vol.11, pp.03, 2018, https://doi.org/10.1142/S179360471850056X