DOI QR코드

DOI QR Code

Effects of Partial Substitution of W for Ti in Titanium Dioxide

  • Received : 2011.01.28
  • Accepted : 2011.03.21
  • Published : 2011.04.25

Abstract

[ $Ti_{1-x}W_xO_{2-y}$ ]solid solutions with compositions of x = 0.01(TW-1), x = 0.02(TW-2), x = 0.03(TW-3) and x = 0.04(TW-4) were prepared at 1,073 K in air under atmospheric pressure. All the solutions exhibited tetragonal symmetries. Nonstoichiometric chemical formulas have been obtained from oxidation-reduction titration and the partial substitution of $W^{6+}$ ions mainly caused the formation of $Ti^{3+}$ ion, rather than oxygen excess. Resistivities of the samples were highly dependent on humidity. The increase of the W amount resulted in an increase of $Ti^{3+}$ content, decrease of resistivity values and finally degradation of photocatalytic activities.

Keywords

References

  1. H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, and Yan, Chem. Mater. 16, 846 (2004) [DOI: 10.1021/cm035090w].
  2. A. R. Gandhe and J. B. Fernandes, Bull. Catal. Soc. India 4, 131 (2005).
  3. A. R. Gandhe, S. P. Naik, S. B. Kakodkar, and J. B. Fernandes, Catal. Commun. 7, 285 (2006) [DOI: 10.1016/j.catcom.2005.09.013].
  4. Z. S. Wang, C. H. Huang, F. Y. Li, S. F. Weng, and S. M. Yang, J. Photochem. Photobiol. A: Chem. 140, 255 (2001) [DOI: 10.1016/s1010-6030(01)00411-7].
  5. A. V. Murugan, V. Samuel, and V. Ravi, Mater. Lett. 60, 479 (2006)[DOI: 10.1016/j.matlet.2005.09.017].
  6. M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, and M. Matsuoka, Ann. Rev. Mater. Res. 35, 1 (2005) [DOI: DOI:10.1146/annurev.matsci.35.100303.121340].
  7. S. Klosek and D. Raftery, J. Phys. Chem. B 105, 2815 (2001) [DOI: 10.1021/jp004295e].
  8. J. C. S. Wu and C. H. Chen, J. Photochem. Photobiol. A: Chem. 163, 509 (2004) [DOI: 10.1016/j.jphotochem.2004.02.007].
  9. S. K. Joung, T. Amemiya, M. Murabayashi, and K. Itoh, Chem. Eur. J. 12, 5526 (2006) [DOI: 10.1002/chem.200501020].
  10. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Appl. Phys. Lett. 81, 454 (2002) [DOI: 10.1063/1.1493647].
  11. T. Ohno, T. Mitsui, and M. Matsumura, Chem. Lett. 32, 364 (2003) [DOI: 10.1246/cl.2003.364].
  12. C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk, and W. F. Maier, Appl. Catal. B: Environ. 32, 215 (2001) [DOI: 10.1016/s0926-3373(01)00141-2].
  13. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, Nano Lett. 3, 1049 (2003) [DOI: 10.1021/nl034332o].
  14. C. Ariyo, P. Gonzalez, and L. Holappa, VII International Conference on Molten Slags, Fluxes & Salt (The South African Institute of Mining and Metallurgy, Johannesburg, Republic of South Africa, 2004) p. 125.
  15. E. S. Lee, Bull. Korean Chem. Soc. 25, 859 (2004). https://doi.org/10.5012/bkcs.2004.25.6.859
  16. E. S. Lee, J. Korean Ind. Eng. Chem. 13, 224 (2002).
  17. E. S. Lee, J. Ind. Eng. Chem. 2, 151 (1996).
  18. L. B. Valdes, Proc. IRE 42, 420 (1954). https://doi.org/10.1109/JRPROC.1954.274680
  19. E. S. Lee, J. Ind. Eng. Chem. 14, 701 (2008) [DOI: 10.1016/j.jiec.2008.02.011].
  20. A. R. Gandhe and J. B. Fernandes, J. Solid State Chem. 178, 2953 (2005) [DOI: 10.1016/j.jssc.2005.06.034].