DOI QR코드

DOI QR Code

OSCILLATION OF ONE ORDER NEUTRAL DIFFERENTIAL EQUATION WITH IMPULSES

  • Cheng, Jinfa (Department of Mathematics Xiamen University) ;
  • Chu, Yuming (Department of Mathematics Huzhou Teachers College)
  • Received : 2007.06.26
  • Published : 2011.04.30

Abstract

Explicit sufficient conditions are established for the oscillation of the one order neutral differential equations with impulsive $(x(t)+{\sum\limits^n_{i=1}}c_ix(t-{\sigma}_i))'+px(t-{\tau})=0$, $t{\neq}t_{\kappa}$, ${\Delta}(x(t_{\kappa})+{\sum\limits^n_{i=1}}c_ix(t_{\kappa}-{\sigma}_i))+p_0x(t_{\kappa}-{\tau})=0$, $c_i{\geq}0$, $i=1,2,{\ldots}n$, $p{\tau}$>0, $p_0{\tau}$>0, ${\Delta}(x_{\kappa})=x(t^+_{\kappa})-x(t_{\kappa})$. Explicit sufficient and necessary condition are established when $c_i$ = 0, i = 1, 2, ${\ldots}$, n.

Keywords

References

  1. R. P. Agarwal, M. Bohner, and W. T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel Dekker, New York, 2004.
  2. R. P. Agarwal, S. R. Grace, and D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 2000.
  3. R. P. Agarwal, S. R. Grace, Oscillation Theory for Second Order Dynamic Equations, Taylor & Francis, London, 2003.
  4. D. Bainov and D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, Bristol, 1991.
  5. D. Bainov and P. Simeonov, Oscillation Theory of Impulsive Differential Equations, International Publications, Orlando, 1998.
  6. L. H. Erbe, Q. K. Kong, and B. G. Zhang, Oscillation Theory for Functional-Differential Equations, Marcel Dekker, New York, 1995.
  7. K. Gopalsamy and B. G. Zhang, On delay differential equations with impulses, J. Math. Anal. Appl. 139 (1989), no. 1, 110-122. https://doi.org/10.1016/0022-247X(89)90232-1
  8. I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations, Oxford University Press, New York, 1991.