References
- R. H. Bruck, A Survey of Binary Systems, Springer-Verlag, New York, 1958.
- H. S. Kim and J. Neggers, The semigroups of binary systems and some perspectives, Bull. Korean Math. Soc. 45 (2008), no. 4, 651-661. https://doi.org/10.4134/BKMS.2008.45.4.651
- L. Nebesky, An algebraic characterization of geodetic graphs, Czechoslovak Math. J. 48(123) (1998), no. 4, 701-710.
- L. Nebesky, A tree as a finite nonempty set with a binary operation, Math. Bohem. 125 (2000), no. 4, 455-458.
- L. Nebesky, Travel groupoids, Czechoslovak Math. J. 56(131) (2006), no. 2, 659-675.
Cited by
- The Interaction between Fuzzy Subsets and Groupoids vol.2014, 2014, https://doi.org/10.1155/2014/246285
- Hyperfuzzy subsets and subgroupoids vol.33, pp.3, 2017, https://doi.org/10.3233/JIFS-17104
- Fuzzy rank functions in the set of all binary systems vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-3536-z
- The Hypergroupoid Semigroups as Generalizations of the Groupoid Semigroups vol.2012, 2012, https://doi.org/10.1155/2012/717698
- On Abelian and Related Fuzzy Subsets of Groupoids vol.2013, 2013, https://doi.org/10.1155/2013/476057
- Fuzzy Upper Bounds in Groupoids vol.2014, 2014, https://doi.org/10.1155/2014/697012
- A Method to Identify Simple Graphs by Special Binary Systems vol.10, pp.7, 2018, https://doi.org/10.3390/sym10070297