DOI QR코드

DOI QR Code

REMARKS ON LOGARITHMICALLY REGULARITY CRITERIA FOR THE 3D VISCOUS MHD EQUATIONS

  • Chen, Xiaochun (Department of Mathematics Chonqing Three Gorges University) ;
  • Gala, Sadek (Department of Mathematics University of Mostaganem)
  • Received : 2009.11.17
  • Accepted : 2010.02.26
  • Published : 2011.05.01

Abstract

In this paper, logarithmically regularity criteria for the 3D MHD equations are established in terms of the Morrey-Camapanto space.

Keywords

References

  1. R. Coifman, P. L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), no. 3, 247-286.
  2. C. H. Chan and A. Vasseur, Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations, Methods Appl. Anal. 14 (2007), no. 2, 197-212.
  3. Q. Chen, C. Miao, and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Comm. Math. Phys. 284 (2008), no. 3, 919-930. https://doi.org/10.1007/s00220-008-0545-y
  4. S. Gala, A note on div-curl lemma, Serdica Math. J. 33 (2007), no. 2-3, 339-350.
  5. C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations 213 (2005), no. 2, 235-254. https://doi.org/10.1016/j.jde.2004.07.002
  6. T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat. (N.S.) 22 (1992), no. 2, 127-155. https://doi.org/10.1007/BF01232939
  7. C. Kenig, G. Ponce, and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), no. 2, 323-347. https://doi.org/10.1090/S0894-0347-1991-1086966-0
  8. P. G. Lemarie-Rieusset, The Navier-Stokes equations in the critical Morrey-Campanato space, Rev. Mat. Iberoam. 23 (2007), no. 3, 897-930.
  9. S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc. 131 (2003), no. 5, 1553-1556. https://doi.org/10.1090/S0002-9939-02-06715-1
  10. G. A. Seregin, A new version of the Ladyzhenskaya-Prodi-Serrin condition, Algebra i Analiz 18 (2006), no. 1, 124-143.
  11. G. A. Seregin, A new version of the Ladyzhenskaya-Prodi-Serrin condition, St. Petersburg Math. J. 18 (2007), no. 1, 89-103.
  12. M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math. 36 (1983), no. 5, 635-664. https://doi.org/10.1002/cpa.3160360506
  13. M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), no. 9-10, 1407-1456. https://doi.org/10.1080/03605309208820892
  14. J. Wu, Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations 33 (2008), no. 1-3, 285-306. https://doi.org/10.1080/03605300701382530
  15. Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst. 12 (2005), no. 5, 881-886. https://doi.org/10.3934/dcds.2005.12.881
  16. Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure, Internat. J. Non-Linear Mech. 41 (2006), no. 10, 1174-1180. https://doi.org/10.1016/j.ijnonlinmec.2006.12.001
  17. Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincare Anal. Non Lineaire 24 (2007), no. 3, 491-505. https://doi.org/10.1016/j.anihpc.2006.03.014
  18. Y. Zhou and J. Fan, On regularity criteria in terms of pressure for the 3D viscous MHD equations, Unpublished, 2008.
  19. Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3-D viscous MHD equations, Submitted, 2009.
  20. Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space, Z. Angew. Math. Phys. 61 (2010), no. 2, 193-199. https://doi.org/10.1007/s00033-009-0023-1
  21. Y. Zhou and S. Gala, Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces, J. Math. Anal. Appl. 356 (2009), no. 2, 498-501. https://doi.org/10.1016/j.jmaa.2009.03.038
  22. Y. Zhou and Z. Lei, Logarithmically improved criteria for Euler and Navier-Stokes equations, Preprint 2008.