References
- R. Coifman, P. L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), no. 3, 247-286.
- C. H. Chan and A. Vasseur, Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations, Methods Appl. Anal. 14 (2007), no. 2, 197-212.
- Q. Chen, C. Miao, and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Comm. Math. Phys. 284 (2008), no. 3, 919-930. https://doi.org/10.1007/s00220-008-0545-y
- S. Gala, A note on div-curl lemma, Serdica Math. J. 33 (2007), no. 2-3, 339-350.
- C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations 213 (2005), no. 2, 235-254. https://doi.org/10.1016/j.jde.2004.07.002
- T. Kato, Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Brasil. Mat. (N.S.) 22 (1992), no. 2, 127-155. https://doi.org/10.1007/BF01232939
- C. Kenig, G. Ponce, and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), no. 2, 323-347. https://doi.org/10.1090/S0894-0347-1991-1086966-0
- P. G. Lemarie-Rieusset, The Navier-Stokes equations in the critical Morrey-Campanato space, Rev. Mat. Iberoam. 23 (2007), no. 3, 897-930.
- S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc. 131 (2003), no. 5, 1553-1556. https://doi.org/10.1090/S0002-9939-02-06715-1
- G. A. Seregin, A new version of the Ladyzhenskaya-Prodi-Serrin condition, Algebra i Analiz 18 (2006), no. 1, 124-143.
- G. A. Seregin, A new version of the Ladyzhenskaya-Prodi-Serrin condition, St. Petersburg Math. J. 18 (2007), no. 1, 89-103.
- M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math. 36 (1983), no. 5, 635-664. https://doi.org/10.1002/cpa.3160360506
- M. E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. Partial Differential Equations 17 (1992), no. 9-10, 1407-1456. https://doi.org/10.1080/03605309208820892
- J. Wu, Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations 33 (2008), no. 1-3, 285-306. https://doi.org/10.1080/03605300701382530
- Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst. 12 (2005), no. 5, 881-886. https://doi.org/10.3934/dcds.2005.12.881
- Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure, Internat. J. Non-Linear Mech. 41 (2006), no. 10, 1174-1180. https://doi.org/10.1016/j.ijnonlinmec.2006.12.001
- Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincare Anal. Non Lineaire 24 (2007), no. 3, 491-505. https://doi.org/10.1016/j.anihpc.2006.03.014
- Y. Zhou and J. Fan, On regularity criteria in terms of pressure for the 3D viscous MHD equations, Unpublished, 2008.
- Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3-D viscous MHD equations, Submitted, 2009.
- Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space, Z. Angew. Math. Phys. 61 (2010), no. 2, 193-199. https://doi.org/10.1007/s00033-009-0023-1
- Y. Zhou and S. Gala, Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces, J. Math. Anal. Appl. 356 (2009), no. 2, 498-501. https://doi.org/10.1016/j.jmaa.2009.03.038
- Y. Zhou and Z. Lei, Logarithmically improved criteria for Euler and Navier-Stokes equations, Preprint 2008.