DOI QR코드

DOI QR Code

Identification of strain harboring both aac(6')-Ib and aac(6')-Ib-cr variant simultaneously in Escherichia coli and Klebsiella pneumoniae

  • Kim, Yun-Tae (Department of Molecular Biology, Seoul Medical Science Institute/Seoul Clinical Laboratories) ;
  • Jang, Ji-Hyun (Department of Molecular Biology, Seoul Medical Science Institute/Seoul Clinical Laboratories) ;
  • Kim, Hyun-Chul (Department of Molecular Biology, Seoul Medical Science Institute/Seoul Clinical Laboratories) ;
  • Kim, Hyo-Gyeong (Department of Molecular Biology, Seoul Medical Science Institute/Seoul Clinical Laboratories) ;
  • Lee, Kyoung-Ryul (Department of Molecular Biology, Seoul Medical Science Institute/Seoul Clinical Laboratories) ;
  • Park, Kyung-Sun (Department of Laboratory Medicine, Kyung-Hee Medical Center, School of Medicine, Kyung-Hee University) ;
  • Lee, Hee-Joo (Department of Laboratory Medicine, Kyung-Hee Medical Center, School of Medicine, Kyung-Hee University) ;
  • Kim, Young-Jin (Department of Molecular Biology, Seoul Medical Science Institute/Seoul Clinical Laboratories)
  • Received : 2010.11.03
  • Accepted : 2011.01.28
  • Published : 2011.04.30

Abstract

The aac(6')-Ib gene is the most prevalent gene that encodes aminoglycoside-modifying enzymes and confers resistance to tobramycin, kanamycin, and amikacin. The aac(6')-Ib-cr variant gene can induce resistance against aminoglycoside and fluoroquinolone simultaneously. Two main methods, sequence analysis and the restriction enzyme method, can detect the aac(6')-Ib-cr variant in clinical strains. We collected the 85 strains that were believed to be aac(6')-Ib positive from clinical isolates. Among them, 38 strains were the wild-type; the remaining 47 strains were the aac(6')-Ib-cr variant. Of these 47 strains, 19 simultaneously harbored aac(6')-Ib and aac(6')-Ib-cr. Our study aims to report the characteristics of the 19 strains that simultaneously harbored both genes. This study is the first investigation published in Korea of strains that included both aac(6')-Ib and aac(6')-Ib-cr variant.

Keywords

References

  1. Hooper, D. C. (2000) Mechanisms of action and resistance of older and newer fluoroquinolones. Clin. Infect. Dis. 31, S24-S28. https://doi.org/10.1086/314056
  2. Robicsek, A., Jacoby, G. A. and Hooper, D. C. (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 6, 629-640. https://doi.org/10.1016/S1473-3099(06)70599-0
  3. Vakulenko, S. B. and Mobashery, S. (2003) Versatility of aminoglycosides and prospects for their future. Clin. Microbiol. Rev. 16, 430-450. https://doi.org/10.1128/CMR.16.3.430-450.2003
  4. Tolmasky, M. E., Roberts, M., Woloj, M. and Crosa, J. H. (1986) Molecular cloning of amikacin resistance determinants from a Klebsiella pneumoniae plasmid. Antimicrob. Agents Chemother. 30, 315-320. https://doi.org/10.1128/AAC.30.2.315
  5. Robicsek, A., Strahilevitz, J., Jacoby, G. A., Macielag, M., Abbanat, D., Park, C. H., Bush, K. and Hooper, D. C. (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12, 83-88. https://doi.org/10.1038/nm1347
  6. Hidalgo-Grass, C. and Strahilevitz, J. (2010) High-resolution melt curve analysis for identification of single nucleotide mutations in the quinolone resistance gene aac(6')-Ib-cr. Antimicrob. Agents Chemother. 54, 3509-3511. https://doi.org/10.1128/AAC.00485-10
  7. Martinez-M., L., Eliecer, C. M., Manuel, R.-M. J., Calvo, J. and Pascual, A. (2008) Plasmid-mediated quinolone resistance. Expert. Rev. Anti-Infect. Ther. 6, 685-711. https://doi.org/10.1586/14787210.6.5.685
  8. Strahilevitz, J., Jacoby, G. A., Hooper, D. C. and Robicsek, A. (2009) Plasmid-Mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22, 664-689. https://doi.org/10.1128/CMR.00016-09
  9. Florez, A. B., Ladero, V., Alvarez-Martin, P., Ammor, M. S., Alvarez, M. A. and Mayo, B. (2007) Acquired macrolide resistance in the human intestinal strain Lactobacillus rhamnosus E41 associated with a transition mutation in 23S rRNA genes. Int. J. Antimicrob. Agents 30, 341-344. https://doi.org/10.1016/j.ijantimicag.2007.06.002
  10. Turnpenny, P. D. and Ellard, S. (2007) Emery's Elements of Medical Genetics. 13th ed. Elsevier Limited, Amsterdam, Netherlands.
  11. Guillard, T., Duval, V., Moret, H., Brasme, L., Vernet- Garnier, V. and de Champs, C. (2009) Rapid detection of quinolone resistance gene aac(6')-Ib-cr by pyrosequencing. J. Clin. Microbiol. 48, 286-289.
  12. Bell, J. M., Turnidge, J. D. and Andersson, P. (2010) aac(6')-Ib-cr genotyping by simultaneous high resolution melting analysis of an unlabelled probe and full length amplicon. Antimicrob. Agents Chemother. 54, 1378-1380. https://doi.org/10.1128/AAC.01476-09
  13. Park, C. H., Robicsek, A., Jacoby, G. A., Sahm, D. and Hooper, D. C. (2006) Prevalence in the United States of aac(6')-Ib-cr encoding a ciprofloxacin modifying enzyme. Antimicrob. Agents Chemother. 50, 3953-3955. https://doi.org/10.1128/AAC.00915-06
  14. Robicsek, A., Strahilevitz, J., Sahm, D. F., Jacoby, G. A. and Hooper, D. C. (2006) qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agents Chemother. 50, 2872-2874. https://doi.org/10.1128/AAC.01647-05
  15. Robicsek, A., Strahilevitz, J., Jacoby, G. A., Macielag, M., Abbanat, D., Bush, K. and Hooper, D. C. (2006) Fluoroquinolone modifying enzyme: a novel adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12, 83-88. https://doi.org/10.1038/nm1347
  16. Katsumi, S., Toshiro, S., Hiroshi, O., Kazushi, T., Tohru, U., Sadao, K., Soichi, A. and Akinobu, G. (2004) Rapid detection of gyrA and parC mutations in fluoroquinoloneresistant Neisseria gonorrhoeae by denaturing high-performance liquid chromatography. J. Microbiol. Met. 59, 415-421. https://doi.org/10.1016/j.mimet.2004.08.004
  17. Deborah, J. E., Ernesto, L., Martin, J. W. and Laura, J. V. P. (2002) Detection of gyrA mutations in quinolone-resistant Salmonella enterica by denaturing high-performance liquid chromatography. J. Clin. Microbiol. 40, 4121-4125. https://doi.org/10.1128/JCM.40.11.4121-4125.2002
  18. Heisig, P., Schedletzky, H. and Falkenstein-Paul, H. (1993) Mutations in the gyrA gene of a highly fluoroquinolone-resistant clinical isolate of Escherichia coli. Antimicrob. Agents Chemother. 37, 696-701. https://doi.org/10.1128/AAC.37.4.696
  19. Vila, J., Ruiz, J., Marco, F., Barcelo, A., Gon.i, P., Giralt, E. and Jimenez, de A. T. (1994) Association between double mutation in gyrA gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs. Antimicrob. Agents Chemother. 38, 2477-2479. https://doi.org/10.1128/AAC.38.10.2477
  20. Kim, H. B., Wang, M., Park, C. H., Kim, E. C., Jacoby, G. A. and Hooper, D. C. (2009) oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae. Antimicrob. Agents Chemother. 53, 3582-3584. https://doi.org/10.1128/AAC.01574-08
  21. Clinical and Laboratory Standards Institute (2008) Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement, M2-A9 and M7-A7, Wayne, PA, USA.

Cited by

  1. Resistance to Antibiotics, Biocides, Preservatives and Metals in Bacteria Isolated from Seafoods: Co-Selection of Strains Resistant or Tolerant to Different Classes of Compounds vol.8, 2017, https://doi.org/10.3389/fmicb.2017.01650
  2. Characterisation of quinolone-resistantEscherichia coliof 1997 and 2005 isolates from poultry in Mexico vol.57, pp.4, 2016, https://doi.org/10.1080/00071668.2016.1187716
  3. , Associated with OmpK35 and OmpK36 Porin Loss in Tunisia vol.24, pp.8, 2018, https://doi.org/10.1089/mdr.2017.0165