DOI QR코드

DOI QR Code

Electrodeposition and Characterization of p-type SbxTey Thermoelectric Thin Films

전착법에 의한 p-형 SbxTey 박막 형성 및 열전특성 평가

  • 박미영 (한국기계연구원부설 재료연구소) ;
  • 임재홍 (한국기계연구원부설 재료연구소) ;
  • 임동찬 (한국기계연구원부설 재료연구소) ;
  • 이규환 (한국기계연구원부설 재료연구소)
  • Received : 2011.02.08
  • Accepted : 2011.03.03
  • Published : 2011.04.27

Abstract

The electro-deposition of compound semiconductors has been attracting more attention because of its ability to rapidly deposit nanostructured materials and thin films with controlled morphology, dimensions, and crystallinity in a costeffective manner (1). In particular, low band-gap $A_2B_3$-type chalcogenides, such as $Sb_2Te_3$ and $Bi_2Te_3$, have been extensively studied because of their potential applications in thermoelectric power generator and cooler and phase change memory. Thermoelectric $Sb_xTe_y$ films were potentiostatically electrodeposited in aqueous nitric acid electrolyte solutions containing different ratios of $TeO_2$ to $Sb_2O_3$. The stoichiometric $Sb_xTe_y$ films were obtained at an applied voltage of -0.15V vs. SCE using a solution consisting of 2.4 mM $TeO_2$, 0.8 mM $Sb_2O_3$, 33 mM tartaric acid, and 1M $HNO_3$. The stoichiometric $Sb_xTe_y$ films had the rhombohedral structure with a preferred orientation along the [015] direction. The films featured hole concentration and mobility of $5.8{\times}10^{18}/cm^3$ and $54.8\;cm^2/V{\cdot}s$, respectively. More negative applied potential yielded more Sb content in the deposited $Sb_xTe_y$ films. In addition, the hole concentration and mobility decreased with more negative deposition potential and finally showed insulating property, possibly due to more defect formation. The Seebeck coefficient of as-deposited $Sb_2Te_3$ thin film deposited at -0.15V vs. SCE at room temperature was approximately 118 ${\mu}V/K$ at room temperature, which is similar to bulk counterparts.

Keywords

References

  1. K. Park, F. Xiao, B. Y. Yoo, Y. Rheem and N. V.Myung, J. Alloy. Comp, 485(1-2), 362 (2009). https://doi.org/10.1016/j.jallcom.2009.05.106
  2. D. Del Frari, S. Diliberto, N. Stein, C. Boulanger and J.-M. Lecuire, Thin Solid Films, 483(1-2), 44 (2005). https://doi.org/10.1016/j.tsf.2004.12.015
  3. B. Y. Yoo, C. K. Huang, J. R. Lim, J. Herman, M. A.Ryan, J. P. Fleurial and N. V. Myung, Electrochim. Acta,50(22), 4371 (2005). https://doi.org/10.1016/j.electacta.2005.02.016
  4. I. Y. Erdogan and U. Demir, J. Electroanal. Chem.,633(1), 253 (2009). https://doi.org/10.1016/j.jelechem.2009.06.010
  5. G. Leimkuhler, I. Kerkamm and R. Reineke-Koch, J. Electrochem. Soc., 149(10), C474 (2002). https://doi.org/10.1149/1.1503811
  6. J. Yang, W. Zhu, X. Gao, S. Bao, X. Fan, X. Duan andJ. Hou, J. Phys. Chem. B, 110(10), 4599 (2006). https://doi.org/10.1021/jp0565498
  7. C. Wang, Q. Wang, L. Chen, X. Xu and Q. Yao,Electrochem. Solid State Lett., 9(9), C147 (2006). https://doi.org/10.1149/1.2211884
  8. Q. Huang, A. J. Kellock and S. Raoux, J. Electrochem. Soc., 155(2), D104 (2008). https://doi.org/10.1149/1.2806169
  9. M. P. R. Panicker, M. Knaster and F. A. Kroger, J. Electrochem. Soc., 125(4), 566 (1978). https://doi.org/10.1149/1.2131499
  10. H. Pan, B. Liu, J. Yi, C. Poh, S. Lim, J. Ding, Y. Feng,C. H. A. Huan and J. Lin, J. Phys. Chem. B, 109(8), 3094(2005). https://doi.org/10.1021/jp0451997
  11. R. Venkatasubramanian, T. Colpitts, E. Watko, M.Lamvik and N. El-Masry, J. Cryst. Growth, 170(1-4), 817(1997). https://doi.org/10.1016/S0022-0248(96)00656-2