DOI QR코드

DOI QR Code

액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 2. 용매의 영향 및 제조 방법에 따른 분말입자의 비교

Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part 2. Effect of Solvent and Comparison of Fabricated Powder owing to Fabrication Method

  • 류호진 (울산대학교 공과대학 첨단소재공학부) ;
  • 이용희 (울산대학교 공과대학 첨단소재공학부) ;
  • 손광욱 (울산대학교 공과대학 첨단소재공학부) ;
  • 공영민 (울산대학교 공과대학 첨단소재공학부) ;
  • 김진천 (울산대학교 공과대학 첨단소재공학부) ;
  • 김병기 (울산대학교 공과대학 첨단소재공학부) ;
  • 윤중열 (한국기계연구원 부설 재료연구소)
  • Ryu, Ho-Jin (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Yong-Heui (School of Materials Science and Engineering, University of Ulsan) ;
  • Son, Kwang-Ug (School of Materials Science and Engineering, University of Ulsan) ;
  • Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Jin-Chun (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Byoung-Kee (School of Materials Science and Engineering, University of Ulsan) ;
  • Yun, Jung-Yeul (Korea Institute of Materials Science)
  • 투고 : 2011.02.24
  • 심사 : 2011.03.14
  • 발행 : 2011.04.28

초록

This study investigated the effect of solvent on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid and compared the alloy particles fabricated by three different methods (PWE in liquid, PWE in Ar, plasma arc discharge), for high temperature oxidation-resistant metallic porous body for high temperature soot filter system. Three different solvents (ethanol, acetone, distilled water) of liquid were adapted in PWE in liquid process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. The alloy powder synthesized by PWE in ethanol has good particle size and no surface oxidation compared to that of distilled water. Since the Fe-based alloy powders, which were fabricated by PWE in Ar and PAD process, showed surface oxidation by TEM analysis, the PWE in ethanol is the best way to fabricate Fe-based alloy nano powder.

키워드

참고문헌

  1. KIPO: Automotive Exhaust Gas After-treatment, (2004) 147.
  2. KIPO: Automotive Exhaust Gas After-treatment, (2004) 90.
  3. Y. Park and H. D. Kim: Ceramist, 10 (2007) 58.
  4. Alantum, http://www.alantum.com/kr/manufacturing.html
  5. J. Yun, S. S. Yang and J. Yu: Particle and Aerosol Researc, 6 (2010) 38.
  6. C. K. Kim, G. J. Lee and C. K. Rhee: J. Korean Powder Metall. Inst., 17 (2010) 276. (Korean) https://doi.org/10.4150/KPMI.2010.17.4.276
  7. J. H. Park, Y. R. Uhm, K. H. Kim, W. W. Kim and C. K. Rhee: J. Korean Powder Metall. Inst., 10 (2003) 83. (Korean) https://doi.org/10.4150/KPMI.2003.10.2.083
  8. G. H. Lee, C. K. Rhee, W. W. Kim, O. M. Samato, Y. A. Kotov and Y. S. Kwon: J. Korean Powder Metall. Inst., 11 (2004) 105. (Korean) https://doi.org/10.4150/KPMI.2004.11.2.105
  9. Y. S. Kwon, A. P. Ilyin and D. V. Tichonov: J. Korean Powder Metall. Inst., 10 (2010) 157. (Korean) https://doi.org/10.4150/KPMI.2003.10.3.157
  10. J. Park, W. Kim, C. Suh, J. Ahn and B. Kim: J. Korean Powder Metall. Inst., 15 (2008) 234. (Korean) https://doi.org/10.4150/KPMI.2008.15.3.234
  11. C. W. Lee, D. Y. Maeng, J. H. Park, J. Yu, J. Lee, C. K. Rhee and W. W. Kim: J. Korean Powder Metall. Inst., 10 (2003) 279. (Korean)
  12. E. J. Park, L. H. Bac, J. S. Kim, Y. S. Kwon, J. C. Kim, H. S. Choi and Y. H. Chung: J. Korean Powder Metall. Inst., 16 (2009) 218. (Korean)
  13. H. Ryu, Y. Lee, K. Son, Y. Kong, J. Kim, B. Kim and J. Yun: J. Korean Powder Metall. Inst., 18 (2011). (in press)
  14. W. Park, C. Youn, J. Yu, Y. Oh and C. Choi: J. Korean Powder Metall. Inst., 11 (2004) 523. (Korean)
  15. W. Park, C. Youn, J. Yu, Y. Oh and C. Choi: J. Korean Powder Metall. Inst., 11 (2004) 331. (Korean)
  16. G. Lee and S. Kim: J. Korean Powder Metall. Inst., 10 (2003) 55. (Korean)

피인용 문헌

  1. Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process vol.21, pp.1, 2014, https://doi.org/10.4150/KPMI.2014.21.1.55