DOI QR코드

DOI QR Code

Glutathione Concentration as Affected by Sulfate Supply Level and its Relationship with Sulfate Uptake and Assimilatory Enzymes Activity in Rape Plants

유채에서 황 공급수준에 따른 글루타치온 함량의 변화가 황산염 흡수 및 동화관련 효소활력에 미치는 영향

  • Received : 2011.01.28
  • Accepted : 2011.03.08
  • Published : 2011.03.31

Abstract

The glutathione (GSH) concentration in leaves of different maturities and roots of forage rape (Brassica napus L.) supplied with four levels of external $SO_4^{2-}$ (0, 0.1, 1.0 and 2.0 mM) supply were measured. The relationships of GSH concentration with $SO_4^{2-}$ uptake, ATP sulfurylase (ATPS) and O-acteylserine (thiol) lyase (OASTL) activity were also assessed. The $SO_4^{2-}$ uptake increased in parallel with the external $SO_4^{2-}$ supply, while protein concentration was not significantly changed. The ATPS activity increased continuously with decreasing $SO_4^{2-}$ supply from 2.0 to 0 mM, while the OASTL activity decreased significantly only at S-deficient conditions (0 and 0.1 mM). The GSH concentration in the young leaves, middle leaves and roots continuously increased (except for between 1.0 and 2.0 mM in the middle leaves and roots) as the external S supply was increased, but no significant changes occurred in the old leaves. The increased endogenous GSH concentration, affected by the $SO_4^{2-}$ supply level, was significantly related with the decrease in ATPS activity in both leaves and roots, and the decrease in OASTL activity only in leaves..

유채 (Brassica napus L.)에서 황 공급수준에 따른 글루타치온 함량의 변화가 황 흡수 및 동화관련 효소 활력에 미치는 영향을 규명하고자, $SO_4^{2-}$ 농도를 4수준 (0, 0.1, 1.0 및 2.0 mM)으로 25시간 처리 한 후 식물조직 내 글루타치온 함량을 측정하고, $SO_4^{2-}$ 흡수, ATP sulfurylase (ATPS) 및 O-acteylserine (thiol) lyase (OASTL) 효소 활력과의 상관관계를 분석하였다. $SO_4^{2-}$ 흡수는 황 공급수준에 따라 평행적인 증가를 보였으나 잎과 뿌리 조직의 단백질 함량은 유의적인 차이가 없었다. ATPS 활력은 황 공급수준이 0 mM에서 2.0 mM로 증가함에 따라 유의적으로 감소 (p<0.05) 하였으며, OASTL 활력은 황 결핍수준인 0 및 0.1 mM에서만 유의적인 감소 (p<0.05)를 보였다. 어린잎, 중간잎 및 뿌리 조직에서는 황 결핍수준이 증가함에 따라 글루타치온 함량은 유의적으로 증가 (p<0.05) 하였으나, 뿌리에서는 처리간 유의적인 차이가 없었다. 황 공급수준의 감소에 따른 글루타치온 함량과 $SO_4^{2-}$ 흡수간에는 고도의 정의 상관관계 (p<0.01)가 인정되었으며, 잎과 뿌리내의 ATPS 및 잎조직의 OASTL 효소활력 간에는 각각 부의 상관관계 (p<0.05)가 인정되었다.

Keywords

References

  1. Anjum, N.A., S. Umar, A. Ahmad, M Iqbal and N.A. Khan. 2008. Sulphur protects mustard (Brassica compestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul. 54:271-279. https://doi.org/10.1007/s10725-007-9251-6
  2. Blake-Kalff, M.M.A., K.R. Harrison, M.J. Hawkesford, F.J. Zhao and S.P. McGrath. 1998. Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol. 118:1337-1344.6. https://doi.org/10.1104/pp.118.4.1337
  3. Bradford, M.M. 1976. A rapid method for the quantificatio of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Datko, A.H. and S.H. Mudd. 1984. Sulfate uptake and its regulation in Lemna paucicostata Hegelm 6746. Plant Physiol. 75:466-473. https://doi.org/10.1104/pp.75.2.466
  5. Hawkesford, M.J. and L.J. De Kok. 2006. Managing sulphur metabolism in plants. Plant Cell Environ. 29:382-395. https://doi.org/10.1111/j.1365-3040.2005.01470.x
  6. Hesse, H., V. Nikiforva, B. Gakiere and R. Hoefgen. 2004. Molecular analysis and control of cysteine biosynthesis: Integration of nitrogen and sulfur metabolism. J. Exp. Bot. 55:1283-1292. https://doi.org/10.1093/jxb/erh136
  7. Kopriva, S., T. Buchert, G. Fritz, M. Suter, R. Benda, V. Schunemann, A. Koprivova, P. Schurmann, A. X. Trautwein, P.M.H. Kroneck and C. Brunold. 2002. The presence of an iron-sulfur cluster in adenosine 5'-phosphosulfate reductase separates organisms utilizing adenosine 5'-phosphosulfate and phosphoadenosine 5'-phosphosulfate for sulfate assimilation. J. Biol. Chem. 277:21786-21791. https://doi.org/10.1074/jbc.M202152200
  8. Kopriva, S. and H. Rennenberg. 2004. Control of sulphate assimilation and glutathione synthesis:interaction with N and C metabolism. J. Exp. Bot. 55:1831-1842. https://doi.org/10.1093/jxb/erh203
  9. Lappartient, A.G. and B. Touraine. 1996. Demanddriven complete solution of root ATP sulfurylase activity and ${SO_4}^{-2}$ uptake in intact canola. Plant physiol. 111:147-157. https://doi.org/10.1104/pp.111.1.147
  10. Lappartient, A.G., J.J. Vidmar, T. Leustek, A.D.M. Glass and B. Totraine. 1999.Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-tranlocated compound. Plant J. 18: 89-95 https://doi.org/10.1046/j.1365-313X.1999.00416.x
  11. Leustek, T., M.N. Martin, J.A. Bick and J.P. Davies. 2000. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:141-165.
  12. Li, L.S., Y.L. Jin, B.R. Lee and T.H. Kim. 2009. Sulfur deficiency effects on sulfate uptake and assimilatory enzymes activity in rape plants. J. Kor. Grass. Forage Sci. 29(2):95-102. https://doi.org/10.5333/KGFS.2009.29.2.095
  13. Linka, M. and A.P.M. Weber. 2005. Shuffling ammonia between mitochondria and plastids during photorespiration. Trends Plant Sci. 10: 461-465. https://doi.org/10.1016/j.tplants.2005.08.002
  14. Mechteld, M., A. Blake-Kalff, R. Kevin, M.J. Hawkesford, J.F. Zhao and S.P. McGrath. 1998. Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol. 118:1337-1344. https://doi.org/10.1104/pp.118.4.1337
  15. Nikiforova, V., J. Freitag, S. Kempa, M. Adamik, H. Hesse, R. Hoefgen. 2003. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J. 33:633-650. https://doi.org/10.1046/j.1365-313X.2003.01657.x
  16. Prosser, I.M., J.V. Purves, L.R. Saker and D.T. Clarkson. 2001. Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. J. Exp. Bot. 52:113-121. https://doi.org/10.1093/jexbot/52.354.113
  17. Rausch, T. and A. Wachter. 2005. Sulfur metabolism:a versatile platform for launching defence operations. Trends Plant Sci. 10:503-509. https://doi.org/10.1016/j.tplants.2005.08.006
  18. Rennenberg, H., O. Kemper and B. Thoene. 1989. Recovery of sulfate transport into hetrotrophic tobacco cells from inhibition by reduced glutathione. Physiol. Plant. 76:271-276. https://doi.org/10.1111/j.1399-3054.1989.tb06190.x
  19. Reuveny, Z., D.K. Dougall, P.M. Trinity. 1980. Regulatory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells. Proc. Natl Acad. Sci. USA. 77:6670-6672. https://doi.org/10.1073/pnas.77.11.6670
  20. Ruiz, J.M. and E. Blumwald. 2002. Salinityinduced glutathione synthesis in Brassica napus. Planta. 214:965-969. https://doi.org/10.1007/s00425-002-0748-y
  21. Saito, K. 2000. Regulation of sulfate transport and synthesis of sulphur-containing amino acids. Curr. Opin. Plant Biol. 3:188-195. https://doi.org/10.1016/S1369-5266(00)80064-3
  22. Schneider, A., T. Schatten and H. Rennenberg. 1994. Exchange between phloem and xylem during long distance transport of glutathione in spruce trees (Picea abies L). J. Exp. Bot. 45:457-462. https://doi.org/10.1093/jxb/45.4.457
  23. Smith, I.K. 1980. Regulation of sulfate assimilation in tobacco cells. Effect of nitrogen and sulfur nutrition on sulfate permease and Oacetylserine sulfurylase. Plant Physiol. 66:877-883. https://doi.org/10.1104/pp.66.5.877
  24. Smith, I. K. and A. L. Lang. 1988. Translocation of sulphur in soybean (Glycine max L. Merr). Plant Physiol. 86:798-802. https://doi.org/10.1104/pp.86.3.798
  25. Suter, M., P. Ballmoos, S. Kopriva, R.O. Camp, J. Schaller, C. Kuhlemeier, P. Schümann and C. Brunold. 2000. Adenosine 5'-phosphosulfate sulfotransferase and adenosine 5'-phosphosulfate reductase are identical enzymes. J. Biol. Chem. 275:930-936. https://doi.org/10.1074/jbc.275.2.930
  26. Takahashi, H. and K. Saito. 1996. Subcellular localization of spinach cysteine synthase isoforms and regulation of their gene expression by nitrogen and sulfur. Plant Physiol. 112:273-280. https://doi.org/10.1104/pp.112.1.273
  27. Takahashi, H., M. Yamazaki, N. Sasakura, A. Watanabe, T. Leustek, J. de Almeida Engler, G.. Engler, M. van Montagu. K. Saito. 1997. Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA. 94:11102-11107. https://doi.org/10.1073/pnas.94.20.11102
  28. Warrilow, A.G.S and M.J. Hawkesford. 1998. Separation, subcellular location and influence of sulfur nutrition on isoforms of cysteine synthase in spinach. J. Exp. Bot. 49:1625-1636. https://doi.org/10.1093/jexbot/49.327.1625