DOI QR코드

DOI QR Code

Atomic Structure of Dissolved Carbon in Enstatite: Raman Spectroscopy and Quantum Chemical Calculations of NMR Chemical Shift

라만 분광분석과 NMR 화학 이동 양자 계산을 이용한 엔스테타이트에 용해된 탄소의 원자 환경 연구

  • Kim, Eun-Jeong (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung-Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 김은정 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2011.12.11
  • Accepted : 2011.12.23
  • Published : 2011.12.31

Abstract

Atomistic origins of carbon solubility into silicates are essential to understand the effect of carbon on the properties of silicates and evolution of the Earth system through igneous and volcanic processes. Here, we investigate the atomic structure and NMR properties of dissolved carbon in enstatite using Raman spectroscopy and quantum chemical calculations. Raman spectrum for enstatite synthesized with 2.4. wt% of amorphous carbon at 1.5 GPa and $1,400^{\circ}C$ shows vibrational modes of enstatite, but does not show any vibrational modes of $CO_2$ or ${CO_3}^{2-}$. The result indicates low solubility of carbon into enstatite at a given pressure and temperature conditions. Because $^{13}C$ NMR chemical shift is sensitive to local atomic structure around carbon and we calculated $^{13}C$ NMR chemical shielding tensors for C substituted enstatite cluster as well as molecular $CO_2$ using quantum chemical calculations to give insights into $^{13}C$ NMR chemical shifts of carbon in enstatite. The result shows that $^{13}C$ NMR chemical shift of $CO_2$ is 125 ppm, consistent with previous studies. Calculated $^{13}C$ NMR chemical shift of C is ~254 ppm. The current calculation will alllow us to assign potential $^{13}C$ NMR spectra for the enstatite dissolved with carbon and thus may be useful in exploring the atomic environment of carbon.

규산염 물질의 탄소 용해도에 대한 미시적 연구는 규산염 물질의 성질 변화와 지구 시스템 진화에 탄소가 미치는 영향의 이해에 매우 중요하다. 본 연구에서는 탄소가 용해된 엔스테타이트 시료에 대하여 라만(Raman) 분광분석을 실시하고, 양자 화학 계산을 통해 결정구조 내에 용해된 탄소의 원자 환경과 핵자기공명 분광 특성을 예측하였다. 1.5 GPa $1,400^{\circ}C$의 온도 압력 조건에서 2.4 wt%의 비정질 탄소와 함께 합성한 엔스테타이트의 라만 실험에서 엔스테타이트의 진동양상은 확인할 수 있었으나, $CO_2$나 탄산염 이온의 진동양상에 대한 정보는 획득하지 못하였다. 이는 엔스테타이트 내에 용해된 탄소의 양이 매우 적어 시료를 구성하는 원자들의 집합적인 진동양상을 측정하는 라만 분광분석으로는 검출이 어려움을 지시한다. 특정 핵종 중심의 핵자기공명 분광분석을 이용하면, 구조 내에 존재하는 탄소만 선택적으로 측정할 수 있다. 특히 $^{13}C$ NMR 화학 이동(chemical shift)은 원자 환경에 따라 민감하게 변하므로, 양자 화학 계산을 이용하여 $CO_2$와 C가 치환된 엔스테타이트 클러스터의 $^{13}C$ NMR 화학 차폐 텐서(chemical shielding tensor)를 계산하였다. 계산 결과 $CO_2$의 피크는 125 ppm에서 나타나며 이는 기존의 실험결과와 일치하며, 상압에서는 생성이 어렵지만 고압환경에서 생성될 가능성이 있는 배위수가 4인 C의 화학 이동 값은 ~254 ppm으로 예측되었다. 이와 같은 양자 화학 계산 결과는 고분해능 $^{13}C$ NMR 실험의 이해를 돕고 탄소의 원자 환경을 연구하는데 도움을 줄 것이다.

Keywords

References

  1. 이범한, 이성근 (2007) 캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향. 한국광물학회지, 20, 313-325.
  2. 이유수, 이성근 (2010) 산소 K-전자껍질 에너지-손실 흡수끝-부근 구조 양자계산을 이용한 Si-$O_{2}$ 동질이상 광물의 전자구조 연구. 한국광물학회지, 23, 403-411.
  3. Alam, T.M., Friedmann, T.A., and Jurewicz, J.G. (2002) Solid State 13C MAS NMR investigations of amorphous carbon thin films structural changes during annealing. In: Soriaga, M.P., Stickney, J., Bottomley, L.A., and Kim, Y.-G.(eds.) Thin films: Preparation, characterization, applications., Kluwer, 370.
  4. Alam, T.M., Friedmann, T.A., Schultz, P.A., and Sebastiani, D. (2003) Low temperature annealing in tetrahedral amorphous carbon thin films observed by C-13 NMR spectroscopy. Phys. Rev. B, 67, 245309. https://doi.org/10.1103/PhysRevB.67.245309
  5. Behrens, H. and Gaillard, F. (2006) Geochemical aspects of melts: Volatiles and redox behavior. Elements, 2, 275-280. https://doi.org/10.2113/gselements.2.5.275
  6. Blank, J.G. and Brooker, R.A. (1994) Experimental studies of carbon dioxide in silicate melts: Solubility, speciation, and stable carbon isotope behavior. In: Carroll, M.R., and Holloway, J.R.(eds.) Volatiles in Magmas, Mineral. Soc. Am.
  7. Blank, J.G., Stolper, E.M., and carroll, M.R. (1993) Solubilities of caron-dioxide and water in rhyolitic melt at 850-degrees-C and 750 Bars. Earth Planet. Sci. Lett., 119, 27-36. https://doi.org/10.1016/0012-821X(93)90004-S
  8. Brearley, M. and Montana A. (1989) The effect of $CO_{2}$ on the viscosity of silicate liquids at high- pressure. Geochim. Cosmochim. Acta, 53, 2609- 2616. https://doi.org/10.1016/0016-7037(89)90132-4
  9. Brey, G. (1976) $CO_{2}$ solubility and solubility mechanisms in silicate melts at high-pressures. Contrib. Mineral. Petrol., 57, 215-221. https://doi.org/10.1007/BF00405226
  10. Brooker, R.A., Kohn, S.C., Holloway, J.R., McMillan, P.F., and Carroll, M.R. (1999) Solubility, speciation and dissolution mechanisms for $CO_{2}$ in melts on the $NaAlO_{2}$-$SiO_{2}$ join. Geochim. Cosmochim. Acta, 63, 3549-3565. https://doi.org/10.1016/S0016-7037(99)00196-9
  11. Brooker, R.A., Kohn, S.C., Holloway, J.R., and Mc-Millan, P.F. (2001a) Structural controls on the solubility of $CO_{2}$ in silicate melts Part I: Bulk solubility data. Chem. Geol., 174, 225-239. https://doi.org/10.1016/S0009-2541(00)00353-3
  12. Brooker, R.A., Kohn, S.C., Holloway, J.R., and Mc-Millan, P.F. (2001b) Structural controls on the solubility of $CO_{2}$ in silicate melts Part II: IR characteristic of carbonate groups in silicate glasses. Chem. Geol., 174, 241-254. https://doi.org/10.1016/S0009-2541(00)00318-1
  13. Chopelas, A. (1999). Estimates of mantle relevant Clapeyron slopes in the $MgSiO_{3}$ system from highpressure spectroscopic data. Am. Mineral., 84, 233-244. https://doi.org/10.2138/am-1999-0304
  14. Di Valentin, C., Pacchioni, G., and Selloni, A. (2005) Theory of carbon doping of titanium dioxide. Chem. Mater., 17, 6656-6665. https://doi.org/10.1021/cm051921h
  15. Dybowski, C., Gaffney, E.J., Sayir, A., and Rabinowitz, M.J. (1996) Solid-state $^{13}C$ and $^{29}Si$ MAS NMR spectroscopy of silicon carbide. Colloid. Surface. A, 118, 171-181. https://doi.org/10.1016/0927-7757(96)03735-1
  16. Eggler, D.H., Mysen, B.O., Hoering, T.C., and Holloway, J.R. (1979) Solubility of carbon-monoxide in silicate melts at high-pressures and its effect on silicate phase-relations. Earth Planet. Sci. lett., 43, 321-330. https://doi.org/10.1016/0012-821X(79)90218-8
  17. Fine, G. and Stolper, E (1985) The speciation of carbon-dioxide in sodium aluminosilicate glasses. Contrib. Mineral. Petrol., 91, 105-121. https://doi.org/10.1007/BF00377759
  18. Freund, F., Kathrein, H., Wengeler, H., Knobel, R., and Reinen, H.J. (1980) Carbon in solid solution in forsterite--a key to the untractable nature of reduced carbon in terrestrial and cosmogenic rocks. Geochim. Cosmochim. Acta, 44, 1319-1321, 1323-1333. https://doi.org/10.1016/0016-7037(80)90092-7
  19. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J. B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D. J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P. M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A. (2004) Gaussian 03. Gaussian, Inc., Wallingford CT.
  20. Green, D.H., Eggings, S.M., and Yaxley, G. (1993) The other carbon cycle. Nature, 365, 210-211. https://doi.org/10.1038/365210a0
  21. Holloway, J.R. and Blank, J.G. (1994). Application of experimental results to C-O-H species in natural melts. In: Carroll, M. R. and Holloway, J. R.(eds.) Volatiles in magmas, Mineral. Soc. America, 30, 187-230.
  22. Hugh-Jones, D.A. and Angel, R.J. (1994) A compressional study of $MgSiO_{3}$ orthoenstatite up to 8.5 GPa. Am. Mineral., 79, 405-410.
  23. Jambon, A. (1994). Earth degassing and large-scale geochemical cycling of volatile elements. In: Carroll, M.R. and Holloway, J.R.(eds.) Volatiles in magmas, Mineral. Soc. America, 30, 479-517.
  24. Keppler, H., Wiedenbeck, M., and Shcheka, S.S. (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle. Nature, 424, 414-416.
  25. Kerrick, D.M. and Connolly, J.A.D. (2001) Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett., 189, 19-29. https://doi.org/10.1016/S0012-821X(01)00347-8
  26. Kim, Fei, and Lee (in preparation)
  27. King, P.L. and Holloway, J.R. (2002) $CO_{2}$ solubility and speciation in intermediate (andesitic) melts: the role of $H_{2}O$ and composition. Geochim. Cosmochim. Acta, 66, 1627-1640. https://doi.org/10.1016/S0016-7037(01)00872-9
  28. Kohn, S.C., Dupree, R., and Smith, M.E. (1989) A multinuclear magnetic-resonance study of the structure of hydrous albite glasses. Geochim. Cosmochim. Acta, 53, 2925-2935. https://doi.org/10.1016/0016-7037(89)90169-5
  29. Kohn, S.C., Brooker, R.A., and Dupree, R. (1991) C-13 MAS NMR - A method for studying $CO_{2}$ speciation in glasses. Geochim. Cosmochim. Acta, 55, 3879-3884. https://doi.org/10.1016/0016-7037(91)90082-G
  30. Kubicki, J.D. and Stolper, E.M. (1995) Structural roles of $CO_{2}$ and $CO_{3}^{2-}$- in fully polymerized sodium aluminosilicate melts and glasses. Geochim. Cosmochim. Acta, 59, 683-698. https://doi.org/10.1016/0016-7037(94)00317-F
  31. Luth, R.W. (2003) Mantle volatiles-distribution and consequences. In: Heinrich, D.H., and Karl, K. T. (eds.) Treatise on Geochemistry, Pergamon, 319-361.
  32. McQuarrie, D.A. and Simon, J.D. (1997) Physical chemistry: a molecular approach, University Science Books, Sausalito, 1360p.
  33. Morizet, Y., Paris, M., Gaillard, F., and Scaillet, B. (2010) C-O-H fluid solubility in haplobasalt under reducing conditions: An experimental study. Chem. Geol., 279, 1-16. https://doi.org/10.1016/j.chemgeo.2010.09.011
  34. Mysen, B.O., Fogel, M.L., Morrill, P.L., and Cody, G. D. (2009) Solution behavior of reduced C-OH volatiles in silicate melts at high pressure and temperature. Geochim. Cosmochim. Acta, 73, 1696-1710. https://doi.org/10.1016/j.gca.2008.12.016
  35. Mysen, B.O., Arculus, R.J., and Eggler, D.H. (1975) Solubility of carbon-dioxide in melts of andesite, tholeiite, and olivine nephelinite composition to 30 kbar pressure. Contrib. Mineral. Petrol., 53, 227-239. https://doi.org/10.1007/BF00382441
  36. Nowak, M., Schree, D., and Spickenbom, K. (2004) Argon and $CO_{2}$ on the race track in silicate melts: A tool for the development of a CO, speciation and diffusion model. Geochim. Cosmochim. Acta, 68, 5127-5138. https://doi.org/10.1016/j.gca.2004.06.002
  37. Pawley, A.R., Holloway, J.R., and McMillan, P.F. (1992) The effect of oxygen fugacity on the solubility of carbon oxygen fluids in basaltic melt. Earth Planet. Sci. Lett., 110, 213-225. https://doi.org/10.1016/0012-821X(92)90049-2
  38. Pearce, M.L. (1964) Solubility of carbon dioxide and variation of oxygen ion activity in soda-silicate melts. J. Am. Ceram. Soc., 47, 342-347. https://doi.org/10.1111/j.1151-2916.1964.tb12998.x
  39. Rockafellow, E.M., Fang, X., Trewyn, B.G., Schmidt-Rohr, K., and Jenks, W.S. (2009) Solid-state $^{13}C$ NMR characterization of carbon-modified $TiO_{2}$. Chem. Mater., 21, 1187-1197. https://doi.org/10.1021/cm8019445
  40. Richet, P. and Bottinga, Y. (1984) Anorthite, andesine, wollastonite, diopside, cordierite, and pyrope: Thermodynamics of melting, glass transitions, and properties of the amorphous phases. Earth Planet. Sci. Lett., 67, 415-432. https://doi.org/10.1016/0012-821X(84)90179-1
  41. Shcheka, S.S., Wiendenbeck, M., Frost, D.J., and Keppler, H. (2006) Carbon solubility in mantle minerals. Earth Planet. Sci. Lett., 245, 730-742. https://doi.org/10.1016/j.epsl.2006.03.036
  42. Stolper, E., Fine, G., Johnson, T., and Newman, S. (1987) Solubility of carbon dioxide in albitic melt. Am. Mineral., 72, 1071-1085.
  43. Tossell, J.A. (1995) Calculation of the C-13 NMR shieldings of the $CO_{2}$ complexes of aluminosilicates. Geochim. Cosmochim. Acta, 59, 1299-1305. https://doi.org/10.1016/0016-7037(95)00044-Z
  44. Tossell, J.A. (2009) Catching $CO_{2}$ in a bowl. Inorg. Chem., 48, 7105-7110. https://doi.org/10.1021/ic802454w
  45. Wyllie, P.J. and Tuttle, O.F. (1959) Effect of carbon dioxide on the melting of granite and feldspars. Am. J. Sci., 257, 648-655. https://doi.org/10.2475/ajs.257.9.648
  46. Zhang, Y. and Zindler, A. (1993) Distribution and evolution of carbon and nitrogen in Earth. Earth Planet. Sci. Lett., 117, 331-345. https://doi.org/10.1016/0012-821X(93)90088-Q
  47. Zucker, R. and Shim, S.H. (2009) In situ Raman spectroscopy of $MgSiO_{3}$ enstatite up to 1550 K. Am. Mineral., 94, 1638-1646. https://doi.org/10.2138/am.2009.3210

Cited by

  1. Quantum Chemical Calculations of the Effect of Si-O Bond Length on X-ray Raman Scattering Features for MgSiO3Perovskite vol.27, pp.1, 2014, https://doi.org/10.9727/jmsk.2014.27.1.11