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Abstract. The geometric process (GP) has been widely used for modeling failure and 
repair time sequences of repairable systems. The GP is mathematically tractable but 
restrictive in reliability applications since it actually assumes that the mean function 
of inter-failure times sequence asymptotically decreases to zero; and the mean 
function of successive repair times sequence asymptotically increases to infinity. This 
is generally unrealistic from an engineering perspective. This paper presents three 
extended GP models for modeling reliability deterioration and improvement (or 
growth) process. The extensions maintain the advantage of mathematical tractability 
of GP model. Their usefulness and appropriateness are illustrated with three 
real-world examples.  
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1. INTRODUCTION 
 

Given a set of failure times of a repairable system, an important reliability problem is 
to estimate the future failure times of the system. Various stochastic process models have 
been developed for this issue (e.g., see Calabria and Pulcini (2000) and cited the literature 
therein). The geometric process (GP) proposed by Lam (1988) has been widely used for 
representing the stochastic phenomenon that the successive working times of the system 
after repair stochastically become shorter and shorter (e.g., see Finkelstein (1993), Stanley 
(1993), Leung and Lee (1998), Wang and Pham (2006), and Lam (2007)). Several authors 
(e.g., Lai and Yuan (1990), Wang and Pham (2006), and Zhang and Wang (2007)) assume 
that the successive repair times after failures constitute a non-decreasing GP. Chan et al. 
(in press) mention that the GP model is very restrictive in applications and develop a 
Bayesian conditional autoregressive GP model, where the model parameters are 
time-dependent.  

The main problem of the GP is that the mean function of inter-failure times 
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asymptotically decreases to zero as the number of failures. Most of repairable systems 
have an asymptotic MTBF as shown in Figure 1.1. This phenomenon is reproduced by 
Jiang and Qin (2007) by simulation. They study the failure point process of a series 
system composed of several components. The system is repaired at failure by replacing 
the failed component with a new one. As such, the failure process is simulated and the 
MTBF is evaluated. The simulated MTBF is very similar to the one in Figure 1.1. Using 
the simulated data, they further examine whether or not the GP model is appropriate for 
modeling the inter-failure times under this component failure replacement policy and 
minimal repair policy, and show that the GP is inappropriate for modeling these two 
stochastic processes. 

 
Figure 1.1  MTBF of an actual repairable system (Note: the time scales of t  and MTBF 

are different) 
 

From an engineering perspective, it is impossible for repair time to increase to 
infinity. If it is increasing, the rate of increase should gradually decrease with the number 
of repairs. In other words, the GP is also inappropriate for modeling repair time sequence. 
In fact, we have not found any published repair time sequence data from field to validate 
the use of the GP model.  

A main advantage of the GP model is its mathematical tractability. To avoid the 
limitations without loss of this advantage, we present three extended GP models in this 
paper. The basic idea is to transform a non-negative random variable sequence 

{ , 1}jZ Z j= ≥  into a GP sequence { , 1}jX X j= ≥  so that { , 1}jZ Z j= ≥  follows an 
extended GP. Three simple transformations are introduced and result in three extended GP 
models. The extended GP models can be used for modeling reliability deterioration 
process, repair time sequence if the repair times are increasing, and reliability 
improvement process. The usefulness and appropriateness of the proposed models will be 
illustrated with three real-world examples. 

The paper is organized as follows. Section 2 outlines the GP and its properties. The 
three extended GP models are presented and illustrated in Sections 3, 4 and 5, respectively. 
Section 3 also presents extensions of the power-law and log-linear point process models. 
The paper is concluded in Section 6.  
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2. GEOMETRIC PROCESS AND ITS PROPERTIES 

 
2.1 GP model  
 

Let { , 1}jX X j= ≥  be a set of non-negative random variables. If 
1{ , 1}j

j jY Y X jρ −= = ≥  forms a renewal process, then X  is called a GP and ρ  (a 
positive real number) is called the ratio of the GP.  

Let μ  and 2σ  denote the mean and variance of the renewal process Y . The mean 
and variance of the GP X  are given by 

1( ) / j
j jE X m μ ρ −= = , 2 2 2( 1)( ) / j

j jVar X s σ ρ −= = .        (2.1) 
Letting 1 /α ρ= , (2.1) can be written as  

1j
jm μα −= , 1j

js σα −= .        (2.2) 
As such, a GP can be fully specified by (2.2).  
 
2.2 Cumulative working time and MTBF 
 

A failure point process can be represented using different measures of failure time. 
Two important measures are cumulative working time and MTBF. Let X  be an 
inter-failure times sequence, { , 1}jT T j= ≥  denote the cumulative working time process, 
and { , 1}jM M j= ≥  denote the MTBF process.  

The cumulative working time to the j -th failure is a random variable and given by  

1

j

j i
i

T X
=

= ∑ .         (2.3) 

From (2.2) and (2.3) we have  

( )j jE Tμ = 1

1 1

1
1

jj j
i

i
i i

m αμ α μ
α

−

= =

−
= = =∑ ∑

−
.        (2.4) 

The MTBF of the first j  working cycles is a random variable and given by  
/j jM T j= , 1j ≥ .           (2.5) 

From (2.4) and (2.5), we have:  

( )j jE Mδ = /j jμ= (1 )
(1 )

j

j
μ α

α
−

=
−

.       (2.6) 

We call jm , jμ  and jδ  the mean functions of X , T  and M , respectively. It is 
noted that the cumulative working time and MTBF processes contain the information of 
the history of the failure process. Therefore, one often transforms the inter-failure data into 
the cumulative working time data for reliability modeling.  

 
2.3 Some properties of GP as a failure point process  
 

In reliability and maintenance applications of the GP, it is usually assumed that an 
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inter-failure time sequence follows the GP with 1α < . If this assumption holds, from 
(2.2), (2.4) and (2.6), the failure point process should have the following properties: 

0jm → , jμ →
1
μ
α−

, 0jδ → .          (2.7) 

Eq. (2.7) implies that the asymptotic MTBF of the failure point process tends to zero and 
the mean of cumulative working time after many repairs is always smaller than a certain 
value. Generally, practical engineering systems do not have such features. Therefore, the 
GP cannot well represent the practical failure behavior of engineering systems, and is 
generally inappropriate for modeling inter-failure sequence.  
 
 

3. EXTENDED GEOMETRIC PROCESS MODEL 1 
 

3.1 Extended GP-1  
 

Let { , 1}jZ Z j= ≥  denote an inter-failure time sequence, which is stochastically 
decreasing and asymptotically tends to a positive constant a . The stochastic process 
X Z a= −  will asymptotically tend to zero. We call Z  is an extended GP (or EGP-1 for 
short) if  

X Z a= −              (3.1) 
is a GP. In this case, the stochastic process 1{( ) / , 1}j

jY Z a jα −= − ≥  is a renewal 

process with mean μ  and variance 2σ .  
Let ,( )j z jE Z m=  denote the mean function of Z . From (3.1), we have  

,( )j j z jE X m m a= = − .            (3.2) 
Using (2.2) to (3.2) we have:  

1
,

j
z jm a μα −= + , 0 1α< < .          (3.3) 

Clearly, ,z jm a→ , implying that the stochastic process Z  meets the desired asymptotic 

property. Also, it is noted that 1
, 1 ,/ (1 ) / ( )j

z j z jm m a aα α μα −
+ = + − +  increases and tends 

to 1 as j  increases, implying that the rate of decrease gets gradually slow. This feature is 
similar to the one shown in Figure 1.1 and hence desired.  

The mean function of the stochastic process T = {
1

j

j i
i

T Z
=

= ∑ } is given by:  

1
1

j

j aj αμ μ
α

−
= +

−
.                  (3.4) 

The mean function of the stochastic process M = { /j jM T j= } is given by:  

(1 )
(1 )

j

j a
j
μ αδ

α
−

= +
−

.            (3.5) 

Clearly, j aδ → , implying that the MTBF process meets the desired asymptotic property.  
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3.2 Discussion 
 

Eq. (3.4) gives an important observation: the mean of cumulative working time jμ  
is an asymptotically linear function of j  if the repairable system has an asymptotic 
positive MTBF.  

Two well-known failure point process models are the power-law model (e.g., see 
Crow (2006)) given by 

[ ( )]E J t tβλ=  or 1/( / )j j βμ λ=           (3.6) 
and the log-linear model (e.g., see Lawless and Thiagarajah (1996)) given by  

/[ ( )] ( 1)t bE J t a e= −  or ln(1 / )j b j aμ = +      (3.7) 
where ( )J t  is the number of failures in ( 0,t ). For the power-law model, 

1/ 1 1/
1 / ( )j j j β βμ μ βλ−
−− →  so that 1 0j jμ μ −− →  for 1β >  (for modeling the 

reliability deterioration process) and 1j jμ μ −− →∞  for 1β <  (for modeling the 
reliability growth process). For the log-linear model, 

1 ln[1 1/ ( 1)] 0j j b j aμ μ −− → + + − → . As such, both the models do not meet the 
above-mentioned asymptotic property.  

To improve, we extend the power-law model given by (3.6) as below:  
c

j aj bjμ = +  , , 0, (0,1)a b c> ∈        (3.8) 
so that 1j j aμ μ+ − →  as j  increases. Similarly, the log-linear model given by (3.7) can 
be extended as 

ln(1 / )j aj b j cμ = + + , , , 0a b c > .      (3.9) 
 

3.3 Parameter estimation 
 

Consider a failure point process: 
0 1 2{ } { 0 ... }n sT t t t t t= = ≤ ≤ ≤ ≤ ≤           (3.10) 

where st  is the observation stopping time. Let ( ; )j jμ ϕ θ=  denote the mean function of 
T , where θ  is the model parameter set. For EGP-1 model, ( ; )jϕ θ  is given by (3.4) 
and ( , , )aθ μ α= . We estimate the model parameters by fitting ( ; )j jμ ϕ θ=  to the data 
set (3.10) using least squares method.  

In the failure point process (3.10), st  contains more life information than jt  for 
j n≤ . Therefore, we introduce the following constraint:  

( ; ) sn tϕ θ = .                   (3.11) 
The parameter set θ  is estimated by minimizing the following sum of squared errors: 

2

1
[ ( ; )]

n

j
j

SSE t jϕ θ
=

= −∑ .        (3.12) 

subject to the constraints: the one given by (3.11), 0a ≥  and  
1min( ,1 ) 0j j j jx z a t t a j n−= − = − − ≤ ≤ ≥ .     (3.13) 
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The constraint given by (3.13) ensures that the GP X  is non-negative. The Solver of 
Microsoft Excel can be used to directly find the parameters that minimize SSE .  

Once the estimates of a  and α  are obtained, the estimate of 2σ  can be obtained 
by 

2 1( / ,1 )j
jVar x j nσ α −= ≤ ≤ .       (3.14) 

 
3.4 Example 1: Automobile data  
 

The data shown in Table 3.1 deal with the failure times on the cumulative time scale 
with 21n =  and s nt t= , and can be found in Calabria and Pulcini (2000). Using the 
approach outlined in Section 3.3 to fit the EPG-1 given by (3.4) to the data, we obtained 
the estimates of the model parameters: ( , , )a μ α = (0.1160, 5.9473, 0.9326). From (3.14), 
we have 3.2433σ = .  

Figure 3.1 shows the plots of the observed data and fitted mean function. As seen, 
they are fairly close to each other, particularly for those points with large j .  

Table 3.1. Cumulative failure times (in thousand miles) 
11.016 16.336 24.435 26.231 26.347 30.701 34.967 
38.517 42.594 43.350 45.082 46.686 51.225 55.321 
59.344 60.671 63.523 66.505 67.659 69.110 70.271 

 

 
Figure 3.1. Plots of the fitted mean function and observed data 

 
 

4. EXTENDED GEOMETRIC PROCESS MODEL 2 
 

4.1 Extended GP-2  
 
Let { , 1}jZ Z j= ≥  denote a stochastic process (e.g., a reliability improvement 

process or a repair time process), which is stochastically increasing and asymptotically 
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tends to a positive constant a . The stochastic process X = { , 1j jX a Z j= − ≥ } is 
stochastically decreasing and tends to zero. We call the stochastic process  

Z a X= −            (4.1) 
is an extended GP (EGP-2 for short) when X  is a GP. In this case, the stochastic process 

1{( ) / , 1}j
jY a Z jα −= − ≥  is a renewal process with mean μ  and variance 2σ . 

The mean function of the stochastic process Z  is given by  
1

,
j

z ja m μα −− =  or 1
,

j
z jm a μα −= − , 0 1α< < .     (4.2) 

The sequence { , , 1z jm j ≥ } is increasing and tends to a . It is easy to show that 

, 1 ,/z j z jm m+  decreases and tends to 1 as j  increases, implying that the rate of reliability 
improvement gets gradually slow.  

The mean function of the stochastic process { }jT T=  is given by:  

1
1

j

j aj αμ μ
α

−
= −

−
.           (4.3) 

Clearly, jμ  is asymptotically linear with j .  
The mean function of the stochastic process /M T j=  is given by:  

(1 )
(1 )

j

j a
j
μ αδ

α
−

= −
−

.           (4.4) 

The sequence { , 1j jδ ≥ } is also increasing and tends to a .  
 
4.2 Parameter estimation 

 
The parameter estimation method is the same as that outlined in Section 3.3 but (3.13) 

is replaced by  
1min( ,1 ) 0j j j jx a z a t t j n−= − = − + ≤ ≤ ≥ .      (4.5) 

 
4.3 Example 2: Test-fix-test data  

 
The data shown in Table 4.1 is a set of reliability growth test data with 40n =  and 

s nt t= , and can be found in Crow (2006). Crow fits the data to the power-law model given 
by (3.6), which has the intensity function given by  

1[ ( )]( ) dE J tr t t
dt

βλβ −= = .        (4.6) 

The maximum likelihood estimates of the parameters are: ( ,β λ ) = (0.4898, 0.7615). The 
achieved failure intensity and MTBF are estimated by 

( ) 0.0060, 1 / ( ) 166.22s sr t MTBF r t= = = .      (4.7) 
It is noted that the MTBF can be estimated by 1n nμ μ+ − . Using the Crow’s estimates to 
(3.6) we have 41 40 168.26μ μ− = . This estimate is larger than but close to the one given 
by (4.7) with a relative error of 1.2%.  
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Table 4.1. Test-fix-test data (in hours) 

0.7 2.7 13.2 17.6 54.5 99.2 112.2 
120.9 151.0 163.0 174.5 191.6 282.8 355.2 
486.3 490.5 513.3 558.4 678.1 699.0 785.9 
887.0 1010.7 1029.1 1034.4 1136.1 1178.9 1259.7 
1297.9 1419.7 1571.7 1629.8 1702.3 1928.9 2072.3 
2525.2 2928.5 3016.4 3181.0 3256.3   

 
Fitting the EGP-2 given by (4.3) to the data, we obtained the estimates of the model 

parameters: ( , , )a μ α = (8438.45, 8438.45, 0.9995). From (3.14) with 1j j jx a t t −= − + , 
we have 79.46σ = . The achieved reliability can be represented by 41 41 40Z T T= −  with 

41 41 40( ) 166.42E Z μ μ= − = , 2
41 41( ) ( ) 77.89Var a Z Var Z− = = . 

It is noted that the estimate of achieved MTBF (i.e., 166.42) is almost the same as the 
estimate of Crow (i.e., 166.22).  

Figure 4.1 shows the plots of the observed data and fitted mean functions (obtained 
from the power-law model and EGP-2). As seen, the two fitted curves almost overlap 
together, and they are fairly close to the observed data.  

 
Figure 4.1. Plots of the fitted mean functions and observed data 

 
 

5. EXTENDED GEOMETRIC PROCESS MODEL 3 
 

5.1 EGP-3  
 
Let { , 1}jZ Z j= ≥  denote a stochastic process (e.g., a reliability growth process), 

which is stochastically increasing. The stochastic process X = { , 1, 0j jX Z a j a= + ≥ > } 
is stochastically increasing and tends to infinity. We call the stochastic process  

Z X a= −            (5.1) 
is an extended GP (EGP-3 for short) when X  is a GP. In this case, the stochastic process 
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1{( ) / , 1, 1}j
jY Z a jα α−= + > ≥  is a renewal process with mean μ  and variance 2σ . 

The mean function of the stochastic process Z  is given by 
1

,
j

z jm a μα −+ =  or 1
,

j
z jm aμα −= − .      (5.2) 

To make ,1 0zm > , it is required:  
aμ > .         (5.3) 

The mean function of the stochastic process T  is given by:  
1
1

j

j ajαμ μ
α

−
= −

−
.          (5.4) 

The mean function of the stochastic process /M T j=  is given by:  
( 1)
( 1)

j

j a
j
μ αδ
α

−
= −

−
.        (5.5) 

Different from the previous extensions, this extension has 1α >  and, ,z jm  and jδ  
asymptotically tend to infinite. From (5.2), we have  

, 1
1

,

( 1)z j
j

z j

m a
m a

αα
μα

+
−

−
= +

−
.       (5.6) 

The RHS of (5.6) is a decreasing function of j . This implies that the rate of increase of 
the stochastic process Z  gets gradually slow.  
 
5.2 Parameter estimation 
  

The parameter estimation method is the same as that outlined in Section 3.3 but there 
is an additional constraint given by (5.3).  
 
5.3 Example 3: Aircraft generator data  

 
The data shown in Table 5.1 deal with the aircraft generator data with 14n =  and 

s nt t= , and can be found in Calabria and Pulcini (2000). The data show that the reliability 
improves with operating time.   

 
Table 5.1. Aircraft generator failure time data 

10 55 166 205 341 488 567 
731 1308 2050 2453 3115 4017 4596 

 
Fitting the EGP-3 given by (5.4) to the data, we obtained the estimates of the model 

parameters: ( , , )a μ α = (225.43, 225.43, 1.1281). From (3.14), we have 53.05σ = . The 
time to the next failure can be represented by 1 1n n nZ T T+ += −  if the improvement 
continues in a similar way. From the fitted model, we have:  

1 1( ) 992.84n n nE Z μ μ+ += − = , 2
1( ) 286.70nVar Z + = . 

Figure 5.1 shows the plots of the observed data and fitted mean function. As seen, the 
fitted curve and observed data points are fairly close to each other.  
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Figure 5.1. Plots of the fitted mean functions and observed data  

 
 

6. DISCUSSIONS AND CONCLUSIONS 
 

In this paper, we have identified the limitations of the GP in reliability and 
maintenance applications and proposed three extended GPs. The extended GPs are 
mathematically tractable, and their appropriateness and usefulness have been illustrated 
with three real-world examples. In addition, we have extended the power-law and 
log-linear models to make them meet the asymptotic property that MTBF tends to a 
positive constant.  

The main property and applicability of these extended models are summarized in 
Table 6.1. Specifically, EGP-1 model is suitable for modeling reliability deterioration; the 
extended power-law and log-linear models provide two options fore this case; EDP-2 
model is suitable for modeling a reliability growth process or a repair time sequence; and 
EDP-3 model provides another option for modeling reliability improvement. As a result, 
this contribution is useful for reliability and maintenance modeling of repairable systems.  

 
Table 6.1. Summary of the proposed models  

Model α  Properties Applicability 

EPG-1 < 1 Asymptotic MTBF Reliability deterioration process 

EPG-2 < 1 Asymptotic MTBF or 
repair time 

Reliability improvement process or 
repair time process 

EPG-3 > 1 Rate of increase 
gradually decreases Reliability growth process 

Extended 
power-law model  Asymptotic MTBF Reliability deterioration process 

Extended 
log-linear model  Asymptotic MTBF Reliability deterioration process 
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