솔젤법에 의한 메조기공 티타니아/알루미나 막의 제조 및 기체투과 특성

Synthesis and Characterization of Sol-Gel Derived Mesoporous Titania/Alumina Membranes

  • 권혁택 (경희대학교 화학공학과) ;
  • 김진수 (경희대학교 화학공학과)
  • Kwon, Hyuk-Taek (Department of Chemical Engineering, Kyung Hee University) ;
  • Kim, Jin-Soo (Department of Chemical Engineering, Kyung Hee University)
  • 투고 : 2011.08.25
  • 심사 : 2011.09.15
  • 발행 : 2011.09.30

초록

본 연구에서는 메조기공 티타니아/알루미나 막을 솔-젤법을 이용하여 제조하였다. 티타니아/알루미나 막의 기공구조 및 결정상은 하소 온도에 따라 조절될 수 있었다. 티타니아에 알루미나를 첨가하는 것은 티타니아 결정상이 아나타제상에서 루타일상으로 상변화 되는 것을 지연시켜 기공구조의 열적 안정화를 가져왔다. 5번 딥코팅하여 제조된 막의 두께는 $10.3{\mu}m$였으며, 평균 기공크기는 5 nm이었다. 기체 투과 실험 결과는 수소와 질소의 permeance는 각각 $17.1{\tiems}10^{-7}mol/m^2{\cdot}s{\cdot}Pa$$4.7{\tiems}10^{-7}mol/m^2{\cdot}s{\cdot}Pa$이었다. 이 결과는 Knudsen 확산에 의해 설명될 수 있었다.

In this study, mesoporous titania/alumina membranes were prepared by sol-gel method. Pore structure and phase composition of titania/alumina membranes could be changed by calcination temperature. The addition of alumina into titania membranes retarded anatase-to-rutile phase transformation, resulting in stabilization of pore structures. The 5 time dip-coated membrane calcined at $450^{\circ}C$ is about $10.3{\mu}m$ in thickness with an average pore size of 5 nm. Hydrogen and nitrogen permeances through the membrane were $17.1{\times}10^{-7}mol/m^2{\cdot}s{\cdot}Pa$ and $4.7{\times}10^{-7}mol/m^2{\cdot}s{\cdot}Pa$, respectively. These data were explained by the Knudsen diffusion mechanism.

키워드

참고문헌

  1. R. Bhave, "Inorganic Membranes, Synthesis, Characterization and Properties", Van Notrand Reinhold, New York (1991).
  2. H. S. Choi, C. H. Ryu, and G. J. Hwang, "Hydrogen Permselective Membrane using the Zirconia Coated Support", Membrane Journal, 20, 210 (2010).
  3. S. I. Jeon, J. H. Park, S. J. Lee, and S. H. Choi, "Fabrication and Stability of V/YSZ Cermet Membrane for Hydrogen Separation", Membrane Journal, 20, 62 (2010).
  4. J. Y. Park and S. H. Lee, "Effect of Waterback- flushing in Advanced Water Treatment System by Tubular Alumina Ceramic Ultrafiltration Membrane", Membrane Journal, 19, 194 (2009).
  5. Y. S. Lin, "Microporous and dense inorganic membranes: current status and prospective", Sep. Purif. Technol., 25, 39 (2001). https://doi.org/10.1016/S1383-5866(01)00089-2
  6. D. P. Sperry, J. L. Falconer, and R. D. Noble, "Methanol-hydrogen separation by capillary condensation in inorganic membranes", J. Membr. Sci., 60, 185 (1987). https://doi.org/10.1016/S0376-7388(00)81533-1
  7. R. J. R. Uhlhorn, K. Keizer, A. J. Burgraaf, "Gas transport and separation with ceramic membranes", J. Membr. Sci., 66, 259 (1992). https://doi.org/10.1016/0376-7388(92)87016-Q
  8. C.-H. Chang, R. Gopalan, and Y. S. Lin, "A comparative study on thermal and hydrothermal stability of alumina, titania and zirconia", J. Membr. Sci., 91, 27 (1994). https://doi.org/10.1016/0376-7388(94)00041-7
  9. A. Larbot, A. Julbe, C. Guizard, and L. Cot, "Silica membranes by the sol-gel process", J. Membr. Sci., 44, 289 (1989). https://doi.org/10.1016/S0376-7388(00)83359-1
  10. T. Tsuru, D. Hironaka, T. Yoshioka, and M. Asaeda, "Titania membranes for liquid phase separation: effect of surface charge on flux", Sep. Purif. Technol., 25, 307 (2001). https://doi.org/10.1016/S1383-5866(01)00057-0
  11. A. L. Ahmad, M. R. Othman, and H. Mukhtar, "H2 separation from binary gas mixture using coated alumina-titania membrane by sol-gel technique at high temperature region", Inter. J. Hydrogen Energy, 29, 817 (2004). https://doi.org/10.1016/j.ijhydene.2003.10.003
  12. J. Kim, O. Wilhelm, and S. E. Pratsinis, "Packaging of Sol-Gel-Made Porous Nanostructured Titania Particles by Spraying Drying", J. Am. Ceram. Soc., 84, 2802 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01097.x
  13. J. Kim, K. C. Song, S. Foncillas, and S. E. Pratsinis, "Dopants for synthesis of stable bimodally porous titania", J. Eur. Ceram. Soc., 21, 2863 (2001). https://doi.org/10.1016/S0955-2219(01)00222-9
  14. J. Choi, B. Kim, and J. Kim, "Structural evolution of sol-gel derived nanostructured alumina granules with calcination temperature", J. Chem. Eng. JPN., 39, 1000 (2006). https://doi.org/10.1252/jcej.39.1000
  15. J. Kim and Y. S. Lin, "Sol-gel synthesis and characterization of yttria stabilized zirconia membranes", J. Membr. Sci., 139, 75 (1998). https://doi.org/10.1016/S0376-7388(97)00250-0
  16. K. N. P. Kumar, "Nanostructured ceramic membranes; layer and texture formation", Ph.D. Thesis, University of Twente, Enschede, The Netherlands, (1993).
  17. H. Zhang and J. F. Banfield, "A model for exploring particle size and temperature dependence of excess heat capacities of nanocrystalline substances". Nanostructured Materials, 10, 185 (1998). https://doi.org/10.1016/S0965-9773(98)00059-2
  18. J. Yang and J. M. F Ferreira, "Inhibitory effect of alumina additive on the titania phase transformation of a sol-gel-derived power", J. Mater. Sci. Lett., 16, 1993 (1997).
  19. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouqurol, and T. Siemieniewska, "Reporting Physisorption Data for Gas/Solid System-with Special Reference to the Determination of Surface Area and Porosity", Pure Appl. Chem., 57, 603 (1985). https://doi.org/10.1351/pac198557040603
  20. Y. S. Lin and A. J. Burggraaf, "Experimental studies on pore size change of porous ceramic membranes after modification", J. Membr. Sci., 79, 65 (1993). https://doi.org/10.1016/0376-7388(93)85018-R