Abstract
In this study, we propose an automated smile analysis system for self smile training. The proposed system detects the face area from the input image with the AdaBoost algorithm, followed by identifying facial features based on the face shape model generated by using an ASM(active shpae model). Once facial features are identified, the lip line and teeth area necessary for smile analysis are detected. It is necessary to judge the relationship between the lip line and teeth for smiling degree analysis, and to this end, the second differentiation of the teeth image is carried out, and then individual the teeth areas are identified by means of histogram projection on the vertical axis and horizontal axis. An analysis of the lip line and individual the teeth areas allows for an automated analysis of smiling degree of users, enabling users to check their smiling degree on a real time basis. The developed system in this study exhibited an error of 8.6% or below, compared to previous smile analysis results released by dental clinics for smile training, and it is expected to be used directly by users for smile training.
본 논문에서는 사용자가 스스로 미소 훈련을 할 수 있도록 자동으로 미소를 분석하는 시스템을 제안한다. 제안된 시스템은 입력 영상으로부터 AdaBoost 알고리즘을 통해 얼굴 영역을 검출한 다음, ASM(active shape model)을 이용하여 생성된 얼굴 형태 모델을 이용하여 얼굴의 특징을 찾는다. 얼굴 특징을 찾은 다음에는 미소 분석에 필요한 입술 라인과 개별 치아 영역을 추출한다. 미소의 정도를 분석하기 위해 입술 라인과 치아와의 관계 판별이 필요한데, 이를 위해 치아 영상에 대해 2차 미분을 실행한 후, 세로축과 가로축에 히스토그램 프로젝션 방법을 이용하여 개별적인 치아 영역을 찾는다. 입술 라인과 개별 치아 영역에 대한 분석을 통해 사용자의 미소 정도를 자동으로 분석하고 결과를 실시간으로 사용자가 직접 확인할 수 있게 해 준다. 본 논문에서 개발된 시스템은 기존에 치과 병원에서 이루어진 미소 훈련을 위한 미소 평가 결과와 8.6% 이하의 오차를 보였으며 사용자가 혼자서도 미소를 훈련하는데 활용할 수 있는 것으로 분석되었다.