DOI QR코드

DOI QR Code

Pollutant Content of the Sediments in the Drain Channel of Paved Catchments in Coastal Areas

연안역 불투수지역 배수구 퇴적물의 오염특성에 관한 연구

  • Received : 2011.09.12
  • Accepted : 2011.11.22
  • Published : 2011.12.31

Abstract

In this study, the particle size distribution and pollutants content of sediments collected from different sites in the coastal area of Chungnam province were analyzed. The sediment samples were collected from different parking lots near beaches, harbors, museum and bridges. The particle size distribution analysis showed that the particle is generally $106-500{\mu}m$ and the effective size $D_{10}$ ranges from 40 to $60{\mu}m$ while the $D_{50}$ and $D_{60}$ ranges from 200 to $810{\mu}m$ and 235 to $1005{\mu}m$, respectively. For particle size $D_{10}$, there was no significant difference in all sites. However, for $D_{50}$ and $D_{60}$, the range is large. Sediment analysis implicates that as the particle size decreases, the pollutant content increases. This is because smaller particles have higher specific surface area resulting to have more adsorption capacity. Particles from tires, emission gas from vehicles and dust particles belongs to smaller particles. For particle sizes less than $63{\mu}m$, the analysis showed that as the particles become coarser, the concentration of VS, $COD_{cr}$, TN, and TP is at least 2 to 14 times higher. Cu and Pb were detected in all sites and shows a higher concentration with smaller particle size. Cu concentration are almost the same for all sites but in the case of Pb, the sediments from Sinjindo has higher concentration of up to 2 to 3 times as compared to those collected from the other sites. In the Beach site as well as in the Seocheon Ocean Museum, Cd was contained only in fine particles. However, in Daechon Harbor and Sinjindo Bridge sites, Cd was detected in all the sediment particle size.

충남 서해 연안역에 위치하고 있는 해수욕장, 항구, 박물관의 주차시설과 교량에서 발생되는 퇴적물의 입도분포 특성 및 오염물질 함량을 조사한 결과 다음과 같은 결론을 얻었다. 퇴적물의 입경별 % 누적중량분포를 분석한 결과 대부분 $106{\sim}500{\mu}m$사이의 입경범위가 많이 분포되는 것으로 나타났다. 퇴적물의 입경분석 결과 모든 지점에서 유효경 $D_{10}$의 범위는 $40{\sim}160{\mu}m$, $D_{50}$의 범위는 $200{\sim}810{\mu}m$, $D_{60}$$235{\sim}1005{\mu}m$로 나타났다. $D_{10}$의 경우 입경범위가 큰 차이가 없는 반면에 $D_{50}$, $D_{60}$은 큰 차이를 보였다. 대체로 입자크기가 작으면 작을수록 오염물질 함량은 증가하는 것으로 분석되었는데 이는 입자의 크기가 작으면 작을수록 비표면적이 증가하여 오염물질 흡착량이나 결합량이 증가하였거나 입자자체가 타이어나 배가스 분진입자일 가능성이 크기 때문으로 사료된다. 입경 크기가 ${\leq}63{\mu}m$입자에서 VS, $COD_{cr}$, TN, TP의 오염물질이 최저 2배에서 최고 14배 높은 것으로 분석되었다. Cu와 Pb은 모든 지점에서 검출되었으며 일반 오염물질과 마찬가지로 입경이 작을수록 함유량도 증가하는 것으로 나타났다. Cu 함량은 지점 별로 큰 차이가 없었으나 Pb의 경우는 신진도 진입도로인 신진대교 지점에서 다른 곳에 비해 2배에서 3배 정도 높게 검출되었다. Cd은 해수욕장이나 서천해양 박물관 지점에서는 미세 입자에서만 검출되었으나 대천항 주차장과 신진도에서는 모든 크기의 퇴적물에서 검출되었다.

Keywords

References

  1. 김이형. 강주현, 2004. 고속도로 강우 유출수내 오염물질의 EMC 및 부하량 원단위 산정. 한국물환경학회지. 20(6). pp. 631-640.
  2. 김연석, 한봉윤, 우강화, 김영철. 2010. 교량에서 수집된 토사와 고속도로 청소 퇴적물의 입경별 오염물질 함량 비교 연구. 한국물환경학회 상하수도학회 학술발표회 논문집.
  3. 김홍수, 1992. 대전-천안간 고속도로변 토양과 작물체납과 카드뮴 함량분석에 관한 연구. 청주대학교 산업 경영대학원 석사학위논문.
  4. 이소영, 이은주, 김철민. M.c.Maniquiz, 손영규, 김지형, 김이형, 2007. 비점오염저감시설인 침투도랑과 여과형 시설내 침강지 퇴적물의 물리화학적 특성 분석. 한국습지학회지. 9(3). pp. 35-42.
  5. 이은주, 고석오, 강희만. 이주광, 이병식, 임경호, 김이형, 2006. 포장지역에서의 강우사상별 EMC 산정 및 단순 샘플농도와의 비교. 한국물환경학회지. 22(1). pp. 104-109.
  6. 이은주, 이소영, 김준명. 김일규, 김이형, 2006. 주차장 퇴적물의 중금속 농도 및 침전 속도. 한국도로학회 학술발표회 논문집. pp. 313-318.
  7. 이준호, 조용진, 방기웅. 2007. 강우시 도로유출수 수질특성 및 입경분포. 대한환경공학회지. 27(6). pp. 777-784.
  8. 방극진, 1992. 환경오염 유해화학물질 편람.
  9. 환경부. 2008. 한강수계 비점오염저감시설 모니터링 및 유지관리 3차년도 보고서
  10. 한국과학재단. 2002. 서울시 무기 환경시스템의 환경지구화학 및 수리지질학적 연구. pp. 8-115.
  11. 한국도로공사. 1999. 폐모래 처리대책에 관한 연구
  12. APHA, AWWA and WEF, 1995. Standard methods for the examination of water and wastewater. 21th ed. American public health association. Washington. DC
  13. Yu Jianghua, Yi Qitao, Youngchul Kim. 2009. Performance Analysis of a Hydrodynamic Separator for Treating Particulate Pollutants in Highway Rainfall Runoff. Environmental Engineering Researh. 14(4). PP. 262-269 https://doi.org/10.4491/eer.2009.14.4.262
  14. Sansalone, J.J, S.G. Buchberger, S.R. Al-Abed, 1996. Fraction of heavy metals in pavement runoff. The Science of the Total Environment. 189. pp. 371-378.
  15. Tuccillo, E.T, 2006. Size fraction of metals in runoff from residential and highway storm sewers. The Science of the Total Environment, 355. pp. 288-300. https://doi.org/10.1016/j.scitotenv.2005.03.003
  16. Zanders, J.M, 2005. Road sediment: characterization and implications for the performance of vegetatedstrips for treating road runoff. The Science of the Total Environment. 339(1-3). pp. 41-47. https://doi.org/10.1016/j.scitotenv.2004.07.023