Importance of Sperm Capacitation, Removal of Cumulus Matrix, Acrosome Reaction, and Sperm-egg Fusion in the Process of In Vitro Fertilization

  • Kim, Ki-Sun (Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Hwang, Kyung-A (Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Hyoung-Chin (Biomedical Mouse Resource Center, KRIBB) ;
  • Nam, Ki-Hoan (Biomedical Mouse Resource Center, KRIBB) ;
  • Choi, Kyung-Chul (Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2011.11.28
  • Accepted : 2011.12.05
  • Published : 2011.12.31

Abstract

Mammalian fertilization is a complex cascade process consisting of sperm migration through the female reproductive tract, physiological changes to sperm such as sperm capacitation and acrosome reaction, and sperm-egg interaction in the oviduct in vivo. On the other hand, in vitro fertilization (IVF) is a process by which egg cells are fertilized by sperm outside the body: in vitro. IVF has been used for a variety of purposes in reproductive biotechnology for human and animals. The discovery of sperm capacitation in 1951 promoted the development of IVF technology. In the initial stage of IVF, sperm capacitation in preincubation medium was shown to be essential to fuse with eggs. Besides, sperms should detour some of the in vivo regulations for IVF. This review introduces a general mammalian fertilization process, including sperm capacitation, removal of cumulus matrix, acrosome reaction, and sperm-egg fusion and focuses on the roles of key biochemical molecules, signal mechanisms, and genes involved during IVF and novel results of sperm-oocyte interaction elucidated in various gene-knockout mice models.

Keywords

References

  1. Adham IM, Nayernia K and Engel W. 1997. Spermatozoa lacking acrosin protein show delayed fertilization. Mol. Reprod. Dev. 46:370-376. https://doi.org/10.1002/(SICI)1098-2795(199703)46:3<370::AID-MRD16>3.0.CO;2-2
  2. Arnoult C, Zeng Y and Florman HM. 1996. ZP3-dependent activation of sperm cation channels regulates acrosomal secretion during mammalian fertilization. J. Cell. Biol. 134:637-645. https://doi.org/10.1083/jcb.134.3.637
  3. Baba D, Kashiwabara S, Honda A, Yamagata K, Wu Q, Ikawa M, Okabe M and Baba T. 2002. Mouse sperm lacking cell surface hyaluronidase PH-20 can pass through the layer of cumulus cells and fertilize the egg. J. Biol. Chem. 277:30310-30314. https://doi.org/10.1074/jbc.M204596200
  4. Baba T, Azuma S, Kashiwabara S and Toyoda Y. 1994. Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J. Biol. Chem. 269:31845-31849.
  5. Baibakov B, Gauthier L, Talbot P, Rankin TL and Dean J. 2007. Sperm binding to the zona pellucida is not sufficient to induce acrosome exocytosis. Development 134:933-943. https://doi.org/10.1242/dev.02752
  6. Batiz LF, De Blas GA, Michaut MA, Ramirez AR, Rodriguez F, Ratto MH, Oliver C, Tomes CN, Rodriguez EM and Mayorga LS. 2009. Sperm from hyh mice carrying a point mutation in alphaSNAP have a defect in acrosome reaction. PLoS One 4:e4963. https://doi.org/10.1371/journal.pone.0004963
  7. Bedford JM and Kim HH. 1993. Cumulus oophorus as a sperm sequestering device, in vivo. J. Exp. Zool. 265:321-328. https://doi.org/10.1002/jez.1402650314
  8. Bedford JM. 1968. Ultrastructural changes in the sperm head during fertilization in the rabbit. Am. J. Anat. 123:329-358. https://doi.org/10.1002/aja.1001230207
  9. Bleil JD and Wassarman PM. 1980. Mammalian sperm-egg interaction: Identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm. Cell 20:873-882. https://doi.org/10.1016/0092-8674(80)90334-7
  10. Bleil JD and Wassarman PM. 1983. Sperm-egg interactions in the mouse: Sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev. Biol. 95:317-324. https://doi.org/10.1016/0012-1606(83)90032-5
  11. Bleil JD, Greve JM and Wassarman PM. 1988. Identification of a secondary sperm receptor in the mouse egg zona pellucida: Role in maintenance of binding of acrosome-reacted sperm to eggs. Dev. Biol. 128:376-385. https://doi.org/10.1016/0012-1606(88)90299-0
  12. Bookbinder LH, Cheng A and Bleil JD. 1995. Tissue- and species- specific expression of sp56, a mouse sperm fertilization protein. Science 269:86-89. https://doi.org/10.1126/science.7604284
  13. Braden AW and Austin CR. 1954. Fertilization of the mouse egg and the effect of delayed coitus and of hot-shock treatment. Aust. J. Biol. Sci. 7:552-565. https://doi.org/10.1071/BI9540552
  14. Buffone MG, Rodriguez-Miranda E, Storey BT and Gerton GL. 2009. Acrosomal exocytosis of mouse sperm progresses in a consistent direction in response to zona pellucida. J. Cell Physiol. 220:611-620. https://doi.org/10.1002/jcp.21781
  15. Busso D, Cohen DJ, Maldera JA, Dematteis A and Cuasnicu PS. 2007. A novel function for CRISP1 in rodent fertilization: Involvement in sperm-zona pellucida interaction. Biol. Reprod. 77:848-854. https://doi.org/10.1095/biolreprod.107.061788
  16. Busso D, Goldweic NM, Hayashi M, Kasahara M and Cuasnicu PS. 2007. Evidence for the involvement of testicular protein CRISP2 in mouse sperm-egg fusion. Biol. Reprod. 76:701-708. https://doi.org/10.1095/biolreprod.106.056770
  17. Cheng A, Le T, Palacios M, Bookbinder LH, Wassarman PM, Suzuki F and Bleil JD. 1994. Sperm-egg recognition in the mouse: Characterization of sp56, a sperm protein having specific affinity for ZP3. J. Cell. Biol. 125:867-878. https://doi.org/10.1083/jcb.125.4.867
  18. Cherr GN, Lambert H, Meizel S and Katz DF. 1986. In vitro studies of the golden hamster sperm acrosome reaction: Completion on the zona pellucida and induction by homologous soluble zonae pellucidae. Dev. Biol. 114:119-131. https://doi.org/10.1016/0012-1606(86)90388-X
  19. Choi YH and Toyoda Y. 1998. Cyclodextrin removes cholesterol from mouse sperm and induces capacitation in a protein- free medium. Biol. Reprod. 59:1328-1333. https://doi.org/10.1095/biolreprod59.6.1328
  20. Cohen DJ, Busso D, Da Ros V, Ellerman DA, Maldera JA, Goldweic N and Cuasnicu PS. 2008. Participation of cysteinerich secretory proteins (CRISP) in mammalian sperm-egg interaction. Int. J. Dev. Biol. 52:737-742. https://doi.org/10.1387/ijdb.072538dc
  21. Cohen DJ, Da Ros VG, Busso D, Ellerman DA, Maldera JA, Goldweic N and Cuasnicu PS. 2007. Participation of epididymal cysteine-rich secretory proteins in sperm-egg fusion and their potential use for male fertility regulation. Asian J. Androl. 9:528-532. https://doi.org/10.1111/j.1745-7262.2007.00283.x
  22. Cross NL and Meizel S. 1989. Methods for evaluating the acrosomal status of mammalian sperm. Biol. Reprod. 41:635-641. https://doi.org/10.1095/biolreprod41.4.635
  23. Dapino DG, Teijeiro JM, Cabada MO and Marini PE. 2009. Dynamics of heparin-binding proteins on boar sperm. Anim. Reprod. Sci. 116:308-317. https://doi.org/10.1016/j.anireprosci.2009.02.018
  24. Davis BK, Byrne R and Bedigian K. 1980. Studies on the mechanism of capacitation: Albumin-mediated changes in plasma membrane lipids during in vitro incubation of rat sperm cells. Proc. Natl. Acad. Sci. USA. 77:1546-1550. https://doi.org/10.1073/pnas.77.3.1546
  25. Davis BK. 1981. Timing of fertilization in mammals: Sperm cholesterol/phospholipid ratio as a determinant of the capacitation interval. Proc. Natl. Acad. Sci. USA. 78: 7560-7564. https://doi.org/10.1073/pnas.78.12.7560
  26. Dekel N. 1988. Regulation of oocyte maturation. The role of cAMP. Ann. N.Y. Acad. Sci. 541:211-216. https://doi.org/10.1111/j.1749-6632.1988.tb22258.x
  27. Demott RP and Suarez SS. 1992. Hyperactivated sperm progress in the mouse oviduct. Biol. Reprod. 46:779-785. https://doi.org/10.1095/biolreprod46.5.779
  28. Eliasson R. 1966. Cholesterol in human semen. Biochem. J. 98:242-243. https://doi.org/10.1042/bj0980242
  29. Ellerman DA, Busso D, Maldera JA and Cuasnicu PS. 2008. Immunocontraceptive properties of recombinant sperm protein DE: Implications for the development of novel contraceptives. Fertil. Steril. 89:199-205. https://doi.org/10.1016/j.fertnstert.2007.02.025
  30. Eppig JJ. 1989. The participation of cyclic adenosine monophosphate (cAMP) in the regulation of meiotic maturation of oocytes in the laboratory mouse. J. Reprod. Fertil. Suppl. 38:3-8.
  31. Fatehi AN, Zeinstra EC, Kooij RV, Colenbrander B and Bevers MM. 2002. Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate. Theriogenology 57:1347-1355. https://doi.org/10.1016/S0093-691X(01)00717-8
  32. Florman HM and Storey BT. 1982. Mouse gamete interactions: The zona pellucida is the site of the acrosome reaction leading to fertilization in vitro. Dev. Biol. 91:121-130. https://doi.org/10.1016/0012-1606(82)90015-X
  33. Fukami K, Nakao K, Inoue T, Kataoka Y, Kurokawa M, Fissore RA, Nakamura K, Katsuki M, Mikoshiba K, Yoshida N and Takenawa T. 2001. Requirement of phospholipase Cdelta4 for the zona pellucida-induced acrosome reaction. Science 292:920-923. https://doi.org/10.1126/science.1059042
  34. Gadella BM, Flesch FM, van Golde LM and Colenbrander B. 1999. Dynamics in the membrane organization of the mammalian sperm cell and functionality in fertilization. Vet. Q. 21:142-146. https://doi.org/10.1080/01652176.1999.9695009
  35. Gao Z and Garbers DL. 1998. Species diversity in the structure of zonadhesin, a sperm-specific membrane protein containing multiple cell adhesion molecule-like domains. J. Biol. Chem. 273:3415-3421. https://doi.org/10.1074/jbc.273.6.3415
  36. Green DP. 1997. Three-dimensional structure of the zona pellucida. Rev. Reprod. 2:147-156. https://doi.org/10.1530/ror.0.0020147
  37. Guidobaldi HA, Teves ME, Unates DR, Anastasia A and Giojalas LC. 2008. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PLoS. One 3:e3040. https://doi.org/10.1371/journal.pone.0003040
  38. Gupta SK and Bhandari B. 2011. Acrosome reaction: Relevance of zona pellucida glycoproteins. Asian J. Androl. 13:97-105. https://doi.org/10.1038/aja.2010.72
  39. Harrison RA and Gadella BM. 2005. Bicarbonate-induced membrane processing in sperm capacitation. Theriogenology 63:342-351. https://doi.org/10.1016/j.theriogenology.2004.09.016
  40. Hayasaka S, Terada Y, Inoue N, Okabe M, Yaegashi N and Okamura K. 2007. Positive expression of the immunoglobulin superfamily protein IZUMO on human sperm of severely infertile male patients. Fertil. Steril. 88: 214-216. https://doi.org/10.1016/j.fertnstert.2006.11.086
  41. Holtzmann I, Wolf JP and Ziyyat A. 2011. [Sperm reservoir in mice: Involvement of ADAMs]. Gynecol. Obstet. Fertil. 39:630-632. https://doi.org/10.1016/j.gyobfe.2011.09.002
  42. Honda A, Yamagata K, Sugiura S, Watanabe K and Baba T. 2002. A mouse serine protease TESP5 is selectively included into lipid rafts of sperm membrane presumably as a glycosylphosphatidylinositol-anchored protein. J. Biol. Chem. 277:16976-16984. https://doi.org/10.1074/jbc.M112470200
  43. Hong SJ, Chiu PC, Lee KF, Tse JY, Ho PC and Yeung WS. 2009. Cumulus cells and their extracellular matrix affect the quality of the spermatozoa penetrating the cumulus mass. Fertil. Steril. 92:971-978. https://doi.org/10.1016/j.fertnstert.2008.07.1760
  44. Hunter RH. 1996. Ovarian control of very low sperm/egg ratios at the commencement of mammalian fertilisation to avoid polyspermy. Mol. Reprod. Dev. 44:417-422. https://doi.org/10.1002/(SICI)1098-2795(199607)44:3<417::AID-MRD15>3.0.CO;2-X
  45. Ikawa M, Inoue N, Benham AM and Okabe M. 2010. Fertilization: A sperm's journey to and interaction with the oocyte. J. Clin. Invest. 120:984-994. https://doi.org/10.1172/JCI41585
  46. Ikawa M, Nakanishi T, Yamada S, Wada I, Kominami K, Tanaka H, Nozaki M, Nishimune Y and Okabe M. 2001. Calmegin is required for fertilin alpha/beta heterodimerization and sperm fertility. Dev. Biol. 240:254-261. https://doi.org/10.1006/dbio.2001.0462
  47. Ilangumaran S and Hoessli DC. 1998. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem. J. 335 (Pt 2):433-440. https://doi.org/10.1042/bj3350433
  48. Inoue N and Okabe M. 2008. Sperm-egg fusion assay in mammals. Methods Mol. Biol. 475:335-345.
  49. Inoue N, Ikawa M, Isotani A and Okabe M. 2005. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234-238. https://doi.org/10.1038/nature03362
  50. Jaiswal BS, Cohen-Dayag A, Tur-Kaspa I and Eisenbach M. 1998. Sperm capacitation is, after all, a prerequisite for both partial and complete acrosome reaction. FEBS Lett. 427:309-313. https://doi.org/10.1016/S0014-5793(98)00455-4
  51. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S and Kudo A. 2000. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat. Genet. 24:279-282. https://doi.org/10.1038/73502
  52. Kang W, Zhou C, Koga Y and Baba T. 2010. Hyaluronandegrading activity of mouse sperm hyaluronidase is not required for fertilization? J. Reprod. Dev. 56:140-144. https://doi.org/10.1262/jrd.09-152N
  53. Kato Y, Shoei S and Nagao Y. 2010. Capacitation status of activated bovine sperm cultured in media containing methyl- beta-cyclodextrin affects the acrosome reaction and fertility. Zygote 19:21-30.
  54. Kawano N, Kang W, Yamashita M, Koga Y, Yamazaki T, Hata T, Miyado K and Baba T. 2010. Mice lacking two sperm serine proteases, ACR and PRSS21, are subfertile, but the mutant sperm are infertile in vitro. Biol. Reprod. 83:359-369. https://doi.org/10.1095/biolreprod.109.083089
  55. Kierszenbaum AL. 2000. Fusion of membranes during the acrosome reaction: A tale of two SNAREs. Mol. Reprod. Dev. 57:309-310. https://doi.org/10.1002/1098-2795(200012)57:4<309::AID-MRD1>3.0.CO;2-W
  56. Kim E, Baba D, Kimura M, Yamashita M, Kashiwabara S and Baba T. 2005. Identification of a hyaluronidase, Hyal5, involved in penetration of mouse sperm through cumulus mass. Proc. Natl. Acad. Sci. USA. 102:18028-18033. https://doi.org/10.1073/pnas.0506825102
  57. Kim E, Yamashita M, Kimura M, Honda A, Kashiwabara S and Baba T. 2008. Sperm penetration through cumulus mass and zona pellucida. Int. J. Dev. Biol. 52:677-682. https://doi.org/10.1387/ijdb.072528ek
  58. Kim E, Yamashita M, Nakanishi T, Park KE, Kimura M, Kashiwabara S and Baba T. 2006. Mouse sperm lacking ADAM1b/ ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J. Biol. Chem. 281: 5634-5639. https://doi.org/10.1074/jbc.M510558200
  59. Kimura M, Kim E, Kang W, Yamashita M, Saigo M, Yamazaki T, Nakanishi T, Kashiwabara S and Baba T. 2009. Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biol. Reprod. 81: 939-947. https://doi.org/10.1095/biolreprod.109.078816
  60. Kohno N, Yamagata K, Yamada S, Kashiwabara S, Sakai Y and Baba T. 1998. Two novel testicular serine proteases, TESP1 and TESP2, are present in the mouse sperm acrosome. Biochem. Biophys. Res. Commun. 245:658-665. https://doi.org/10.1006/bbrc.1998.8501
  61. Kondoh G, Tojo H, Nakatani Y, Komazawa N, Murata C, Yamagata K, Maeda Y, Kinoshita T, Okabe M, Taguchi R and Takeda J. 2005. Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nat. Med. 11:160-166. https://doi.org/10.1038/nm1179
  62. Kreil G. 1995. Hyaluronidases-a group of neglected enzymes. Protein Sci. 4:1666-1669. https://doi.org/10.1002/pro.5560040902
  63. Kurasawa S, Schultz RM and Kopf GS. 1989. Egg-induced modifications of the zona pellucida of mouse eggs: Effects of microinjected inositol 1,4,5-trisphosphate. Dev. Biol. 133:295-304. https://doi.org/10.1016/0012-1606(89)90320-5
  64. Lai YM, Chang FH, Lee CL, Lee JD, Huang HY, Wang ML, Chan PJ, Chang MY and Soong YK. 1996. Coculture of human spermatozoa with reproductive tract cell monolayers can enhance sperm functions better than coculture with Vero cell monolayers. J. Assist. Reprod. Genet. 13:417-422. https://doi.org/10.1007/BF02066175
  65. Langlais J, Kan FW, Granger L, Raymond L, Bleau G and Roberts KD. 1988. Identification of sterol acceptors that stimulate cholesterol efflux from human spermatozoa during in vitro capacitation. Gamete Res. 20:185-201. https://doi.org/10.1002/mrd.1120200209
  66. Lavy G, Boyers SP and DeCherney AH. 1988. Hyaluronidase removal of the cumulus oophorus increases in vitro fertilization. J. In Vitro Fert. Embryo Transf. 5:257-260. https://doi.org/10.1007/BF01132173
  67. Lefievre L, Conner SJ, Salpekar A, Olufowobi O, Ashton P, Pavlovic B, Lenton W, Afnan M, Brewis IA, Monk M, Hughes DC and Barratt CL. 2004. Four zona pellucida glycoproteins are expressed in the human. Hum. Reprod. 19:1580-1586. https://doi.org/10.1093/humrep/deh301
  68. Lin Y, Mahan K, Lathrop WF, Myles DG and Primakoff P. 1994. A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg. J. Cell Biol. 125:1157-1163. https://doi.org/10.1083/jcb.125.5.1157
  69. Liu C, Litscher ES, Mortillo S, Sakai Y, Kinloch RA, Stewart CL and Wassarman PM. 1996. Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice. Proc. Natl. Acad. Sci. USA. 93:5431-5436. https://doi.org/10.1073/pnas.93.11.5431
  70. Maximov A, Tang J, Yang X, Pang ZP and Sudhof TC. 2009. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323:516-521. https://doi.org/10.1126/science.1166505
  71. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M and Mekada E. 2000. Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321-324. https://doi.org/10.1126/science.287.5451.321
  72. Muro Y, Buffone MG, Okabe M and Gerton GL. 2011. Function of the acrosomal matrix: Zona pellucida 3 receptor (ZP3R/sp56) is not essential for mouse fertilization. Biol. Reprod. in press.
  73. Myles DG and Primakoff P. 1997. Why did the sperm cross the cumulus? To get to the oocyte. Functions of the sperm surface proteins PH-20 and fertilin in arriving at, and fusing with, the egg. Biol. Reprod. 56:320-327. https://doi.org/10.1095/biolreprod56.2.320
  74. Nakagata N, Okamoto M, Ueda O and Suzuki H. 1997. Positive effect of partial zona-pellucida dissection on the in vitro fertilizing capacity of cryopreserved C57BL/6J transgenic mouse spermatozoa of low motility. Biol. Reprod. 57:1050-1055. https://doi.org/10.1095/biolreprod57.5.1050
  75. Ohmura K, Kohno N, Kobayashi Y, Yamagata K, Sato S, Kashiwabara S and Baba T. 1999. A homologue of pancreatic trypsin is localized in the acrosome of mammalian sperm and is released during acrosome reaction. J. Biol. Chem. 274:29426-29432. https://doi.org/10.1074/jbc.274.41.29426
  76. Olson SD, Suarez SS and Fauci LJ. 2011. Coupling biochemistry and hydrodynamics captures hyperactivated sperm motility in a simple flagellar model. J. Theor. Biol. 283:203-216. https://doi.org/10.1016/j.jtbi.2011.05.036
  77. Oren-Benaroya R, Orvieto R, Gakamsky A, Pinchasov M and Eisenbach M. 2008. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum. Reprod. 23:2339-2345. https://doi.org/10.1093/humrep/den265
  78. Patrat C, Serres C and Jouannet P. 2000. The acrosome reaction in human spermatozoa. Biol. Cell 92:255-266. https://doi.org/10.1016/S0248-4900(00)01072-8
  79. Primakoff P, Hyatt H and Myles DG. 1985. A role for the migrating sperm surface antigen PH-20 in guinea pig sperm binding to the egg zona pellucida. J. Cell Biol. 101:2239-2244. https://doi.org/10.1083/jcb.101.6.2239
  80. Primakoff P, Lathrop W, Woolman L, Cowan A and Myles D. 1988. Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20. Nature 335:543-546. https://doi.org/10.1038/335543a0
  81. Rankin T, Familari M, Lee E, Ginsberg A, Dwyer N, Blanchette- Mackie J, Drago J, Westphal H and Dean J. 1996. Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. Development 122:2903-2910.
  82. Rankin T, Talbot P, Lee E and Dean J. 1999. Abnormal zonae pellucidae in mice lacking ZP1 result in early embryonic loss. Development 126:3847-3855.
  83. Rankin TL, O'Brien M, Lee E, Wigglesworth K, Eppig J and Dean J. 2001. Defective zonae pellucidae in Zp2-null mice disrupt folliculogenesis, fertility and development. Development 128:1119-1126.
  84. Reim K, Mansour M, Varoqueaux F, McMahon HT, Sudhof TC, Brose N and Rosenmund C. 2001. Complexins regulate a late step in $Ca^{2+}$-dependent neurotransmitter release. Cell 104:71-81. https://doi.org/10.1016/S0092-8674(01)00192-1
  85. Rodger JC and Bedford JM. 1982. Separation of sperm pairs and sperm-egg interaction in the opossum, Didelphis virginiana. J. Reprod. Fertil. 64:171-179. https://doi.org/10.1530/jrf.0.0640171
  86. Rogers BJ and Morton BE. 1973. The release of hyaluronidase from capacitating hamster spermatozoa. J. Reprod. Fertil. 35:477-487. https://doi.org/10.1530/jrf.0.0350477
  87. Roggero CM, De Blas GA, Dai H, Tomes CN, Rizo J and Mayorga LS. 2007. Complexin/synaptotagmin interplay controls acrosomal exocytosis. J. Biol. Chem. 282:26335-26343. https://doi.org/10.1074/jbc.M700854200
  88. Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP, Levy S, Le Naour F and Boucheix C. 2006. Reduced fertility of female mice lacking CD81. Dev. Biol. 290:351-358. https://doi.org/10.1016/j.ydbio.2005.11.031
  89. Runge KE, Evans JE, He ZY, Gupta S, McDonald KL, Stahlberg H, Primakoff P and Myles DG. 2007. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev. Biol. 304:317-325. https://doi.org/10.1016/j.ydbio.2006.12.041
  90. Saling PM and Storey BT. 1979. Mouse gamete interactions during fertilization in vitro. Chlortetracycline as a fluorescent probe for the mouse sperm acrosome reaction. J. Cell Biol. 83:544-555. https://doi.org/10.1083/jcb.83.3.544
  91. Snider DR and Clegg ED. 1975. Alteration of phospholipids in porcine spermatozoa during in vivo uterus and oviduct incubation. J. Anim. Sci. 40:269-274. https://doi.org/10.2527/jas1975.402269x
  92. Sosnik J, Miranda PV, Spiridonov NA, Yoon SY, Fissore RA, Johnson GR and Visconti PE. 2009. Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J. Cell Sci. 122:2741-2749. https://doi.org/10.1242/jcs.047225
  93. Spiridonov NA, Wong L, Zerfas PM, Starost MF, Pack SD, Paweletz CP and Johnson GR. 2005. Identification and characterization of SSTK, a serine/threonine protein kinase essential for male fertility. Mol. Cell. Biol. 5:4250-4261.
  94. Stein KK, Primakoff P and Myles D. 2004. Sperm-egg fusion: Events at the plasma membrane. J. Cell Sci. 117:6269-6274. https://doi.org/10.1242/jcs.01598
  95. Suarez SS. 1996. Hyperactivated motility in sperm. J. Androl. 17:331-335.
  96. Suzuki K, Eriksson B, Shimizu H, Nagai T and Rodriguez-Martinez H. 2000. Effect of hyaluronan on monospermic penetration of porcine oocytes fertilized in vitro. Int. J. Androl. 23:13-21.
  97. Talbot P, Geiske C and Knoll M. 1999. Oocyte pickup by the mammalian oviduct. Mol. Biol. Cell 10:5-8. https://doi.org/10.1091/mbc.10.1.5
  98. Tanghe S, Van Soom A, Nauwynck H, Coryn M and de Kruif A. 2002. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61:414-424. https://doi.org/10.1002/mrd.10102
  99. Tanigawa M, Miyamoto K, Kobayashi S, Sato M, Akutsu H, Okabe M, Mekada E, Sakakibara K, Miyado M, Umezawa A and Miyado K. 2008. Possible involvement of CD81 in acrosome reaction of sperm in mice. Mol. Reprod. Dev. 75:150-155. https://doi.org/10.1002/mrd.20709
  100. Tanphaichitr N, Carmona E, Bou Khalil M, Xu H, Berger T and Gerton GL. 2007. New insights into sperm-zona pellucida interaction: Involvement of sperm lipid rafts. Front. Biosci. 12:1748-1766. https://doi.org/10.2741/2186
  101. Tardif S, Wilson MD, Wagner R, Hunt P, Gertsenstein M, Nagy A, Lobe C, Koop BF and Hardy DM. 2010. Zonadhesin is essential for species specificity of sperm adhesion to the egg zona pellucida. J. Biol. Chem. 285:24863-24870. https://doi.org/10.1074/jbc.M110.123125
  102. Tesarik J. 1989. Appropriate timing of the acrosome reaction is a major requirement for the fertilizing spermatozoon. Hum. Reprod. 4:957-961. https://doi.org/10.1093/oxfordjournals.humrep.a137020
  103. Travert C, Carreau S and Galeraud-Denis I. 2009. [In vitro capacitation]. Gynecol. Obstet. Fertil. 37:523-528. https://doi.org/10.1016/j.gyobfe.2009.04.004
  104. Valencia A, Wens MA, Merchant H, Reyes R and Delgado NM. 1984. Capacitation of human spermatozoa by heparin. Arch. Androl. Suppl. 12:109-113. https://doi.org/10.3109/01485018409161158
  105. van Gestel RA, Brewis IA, Ashton PR, Brouwers JF and Gadella BM. 2007. Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte. Mol. Hum. Reprod. 13:445-454. https://doi.org/10.1093/molehr/gam030
  106. van Gestel RA, Brewis IA, Ashton PR, Helms JB, Brouwers JF and Gadella BM. 2005. Capacitation-dependent concentration of lipid rafts in the apical ridge head area of porcine sperm cells. Mol. Hum. Reprod. 11:583-590. https://doi.org/10.1093/molehr/gah200
  107. van Gestel RA, Helms JB, Brouwers JF and Gadella BM. 2005. Effects of methyl-beta-cyclodextrin-mediated cholesterol depletion in porcine sperm compared to somatic cells. Mol. Reprod. Dev. 72:386-395. https://doi.org/10.1002/mrd.20351
  108. Vergara GJ, Irwin MH, Moffatt RJ and Pinkert CA. 1997. In vitro fertilization in mice: Strain differences in response to superovulation protocols and effect of cumulus cell removal. Theriogenology 47:1245-1252. https://doi.org/10.1016/S0093-691X(97)00104-0
  109. Wang WH, Abeydeera LR, Fraser LR and Niwa K. 1995. Functional analysis using chlortetracycline fluorescence and in vitro fertilization of frozen-thawed ejaculated boar spermatozoa incubated in a protein-free chemically defined medium. J. Reprod. Fertil. 104:305-313. https://doi.org/10.1530/jrf.0.1040305
  110. Yamaguchi R, Muro Y, Isotani A, Tokuhiro K, Takumi K, Adham I, Ikawa M and Okabe M. 2009. Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol. Reprod. 81:142-146. https://doi.org/10.1095/biolreprod.108.074021
  111. Yamaguchi R, Yamagata K, Ikawa M, Moss SB and Okabe M. 2006. Aberrant distribution of ADAM3 in sperm from both angiotensin-converting enzyme (Ace)- and calmegin (Clgn)-deficient mice. Biol. Reprod. 75:760-766. https://doi.org/10.1095/biolreprod.106.052977
  112. Yanagimachi R and Usui N. 1974. Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp. Cell Res. 89:161-174. https://doi.org/10.1016/0014-4827(74)90199-2
  113. Zhang L, Jiang S, Wozniak PJ, Yang X and Godke RA. 1995. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev. 40:338-344. https://doi.org/10.1002/mrd.1080400310
  114. Zhao L, Burkin HR, Shi X, Li L, Reim K and Miller DJ. 2007. Complexin I is required for mammalian sperm acrosomal exocytosis. Dev. Biol. 309:236-244. https://doi.org/10.1016/j.ydbio.2007.07.009