References
- Barthel, J. M. G., Krienke, H., and Kunz, W., Physical Chemistry of Electrolyte Solutions: Modern Aspects, Springer, New York, 1998, pp. 70-74.
- Lindberg, S. E., and Stratton, W. J., "Atmospheric Mercury Speciation: Concentrations and Behavior of Reactive Gaseous Mercury in Ambient Air," Environ. Sci. Technol., 32, 49-57 (1998). https://doi.org/10.1021/es970546u
- Travis, C. C., and Blaylock, B. P., "Municipal Waste Combustor Emissions: Human Exposure to Mercury and Dioxin," Toxicol. Environ. Chem., 49, 203-216 (1995). https://doi.org/10.1080/02772249509358194
-
Kim, M. H., Ham, S. W., and Lee, J. B., "Oxidation of Gaseous Elemental Mercury by Hydrochloric Acid over
${CuCl_{2}/TiO_{2}}$ -based Catalysts in SCR Process," Appl. Catal. B: Environ., 99, 272-278 (2010). https://doi.org/10.1016/j.apcatb.2010.06.032 - Garey, T., in Proceedings of the Air and Waste Management Association's 92nd Annual Meeting, June, Pittsburgh, PA (1999).
- O'Dowd, W. J., Hargis, R. A., Granite, E. J., and Pennline, H. W., "Recent Advances in Mercury Removal Technology at the National Energy Technology Laboratory," Fuel Process. Technol., 85, 533-548 (2004). https://doi.org/10.1016/j.fuproc.2003.11.007
- Portzer, J. W., Albritton, J. R., Allen, C. C., and Gupta, R. P., "Development of Novel Sorbents for Mercury Control at Elevated Temperatures in Coal-derived Syngas: Results of Initial Screening of Candidate Materials," Fuel Process. Technol., 85, 621-630 (2004). https://doi.org/10.1016/j.fuproc.2003.11.023
- Granite, E. J., Pennline, H. W., and Hargis, R. A., "Novel Sorbents for Mercury Removal from Flue Gas," Ind. Eng. Chem. Res., 39, 1020-1029 (2000). https://doi.org/10.1021/ie990758v
- Presto, A. A., Granite, E. J., Karash, A., Hargis, R. A., O'Dowd, W. J., and Pennline, H. W., "A Kinetic Approach to the Catalytic Oxidation of Mercury in Flue Gas," Energy Fuels, 20, 1941-1945 (2006). https://doi.org/10.1021/ef060207z
- Presto, A. A., and Granite, E. J., "Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas," Platinum Metals Rev., 52(3), 144-154 (2008). https://doi.org/10.1595/147106708X319256
- Niksa, S., and Fujiwara, N., J. "A Predictive Mechanism for Mercury Oxidation on Selective Catalytic Reduction Catalysts under Coal-derived Flue Gas," Air & Waste Manage. Assoc., 55, 1866-1875 (2005). https://doi.org/10.1080/10473289.2005.10464779
- Straube, S., Hahn, T., and Koeser, H., "Adsorption and Oxidation of Mercury in Tail-end SCR-DeNOx Plants-Bench Scale Investigations and Speciation Experiments," Appl. Catal. B: Environ., 79, 286-295 (2008). https://doi.org/10.1016/j.apcatb.2007.10.031
- Lee, C., Srivastava, R., Ghorishi, S., Hastings, T., and Stevens, F., J. "Investigation of Selective Catalytic Reduction Impact on Mercury Speciation under Simulated NOx Emission Control Conditions," Air Waste & Manage. Assoc., 54, 1560-1566 (2004). https://doi.org/10.1080/10473289.2004.10471009
- Dunham, G., DeWall, R., and Senior, C., "Fixed-bed Studies of the Interactions Between Mercury and Coal Combustion Fly Ash," Fuel Process. Technol., 82, 197-213 (2003). https://doi.org/10.1016/S0378-3820(03)00070-5
- Olsen, E., Miller, S., Sharma, R., Dunham, G., and Benson, S., J. "Catalytic Effects of Carbon Sorbents for Mercury Capture," Hazard. Mater., 74, 61-79 (2000). https://doi.org/10.1016/S0304-3894(99)00199-5
- Kellie, S., Cao, Y., Duan, Y., Li, L., Chu, P., Mehta, A., Carty, R., Riley, J., and Pan, W., "Factors Affecting Mercury Speciation in a 100-MW Coal-fired Boiler with Low-NOx Burners," Energy Fuels, 19, 800-806 (2005). https://doi.org/10.1021/ef049769d
-
Ghorishi, S., Lee, C., Jozewicz, W., and Kilgroe, J., "Effects of Fly Ash Transition Metal Content and Flue Gas HCl/
${SO_{2}}$ Ratio on Mercury Speciation in Waste Combustion," Environ. Eng. Sci., 22, 221-231 (2005). https://doi.org/10.1089/ees.2005.22.221 - Zhao, Y., Mann, M., Pavlish, J., Mibeck, B., Dunham, G., and Olson, E., "Application of Gold Catalyst for Mercury Oxidation by Chlorine," Environ. Sci. Technol., 40, 1603-1608 (2006). https://doi.org/10.1021/es050165d
- Niksa, S., and Fujiwara, N., "Predicting Extents of Mercury Oxidation in Coal-derived Flue Gases," Air & Waste Manage. Assoc., 55, 930-939 (2005). https://doi.org/10.1080/10473289.2005.10464688
- Hocquel, M., "The Behaviour and Fate of Mercury in Coal-fired Power Plants with Downstream Air Pollution Control Devices," VDI Verlag: Dusseldorf, Germany, 2004.
- Eswaran S., and Stenger, H., "Understanding Mercury Conversion in Selective Catalytic Reduction (SCR) Catalysts," Energy Fuels., 19, 2328-2334 (2005). https://doi.org/10.1021/ef050087f
- Senior, C., J. "Oxidation of Mercury Across Selective Catalytic Reduction Catalysts in Coal-fired Power Plants," Air & Waste Manage. Assoc., 56, 23-31 (2006). https://doi.org/10.1080/10473289.2006.10464437
- Hong, H. J., Ham, S. W., Kim, M. H., Lee, S. M., and Lee, J. B., "Characteristics of Commercial SCR Catalyst for the Oxidation of Gaseous Elemental Mercury with Respect to Reaction Conditions," Korean J. Chem. Eng., 27(4), 1117-1122 (2010). https://doi.org/10.1007/s11814-010-0175-x
- Mullenberg, G. E., (ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, Minnesota, 1978.
-
Sanati, M., and Andersson, A., "Ammoxtoation of Toluene over
${TiO_{2}}$ (B)-supported Vanadium Oxide Catalysts," J. Mol. Catal., 59, 223-255 (1990). - Centi, G., "Nature of Active Layer in Vanadium Oxide Supported on Titanium Oxide and Control of its Reactivity in the Selective Oxidation and Ammoxidation of Alkylaromatics," Appl. Catal. A: Gen., 147, 267-298 (1996). https://doi.org/10.1016/S0926-860X(96)00179-2
- Wachs, I. E., "Raman and IR Studies of Surface Metal Oxide Species on Oxide Supports: Supported Metal Oxide Catalysts," Catal. Today, 27, 437-455 (1996). https://doi.org/10.1016/0920-5861(95)00203-0
- Dunn, J. P., Koppula, P. R., Stenger, H. G., and Wachs, I. E., "Oxidation of Sulfur Dioxide to Sulfur Trioxide over Supported Vanadia Catalysts," Appl. Catal. B: Environ., 19(2), 103-117 (1998). https://doi.org/10.1016/S0926-3373(98)00060-5
-
Sazanova, N., Tsykoza, L., Simakov, A., Garannik, G., and Ismagilov, Z., "Relationship Between Sulfur Dioxide Oxidation and Selective Catalytic NO Reduction by Ammonia on
${V_{2}O_{5}-TiO_{2}}$ Catalysts Doped with${WO_{3}}$ and${Nb_{2}O_{5}}$ ," React. Kinet. Catal. Lett., 52(1), 101-106 (1994). https://doi.org/10.1007/BF02129856