DOI QR코드

DOI QR Code

Activity of $V_2O_5-WO_3/TiO_2$-based SCR Catalyst for the Oxidation of Gas-phase Elemental Mercury

$V_2O_5-WO_3/TiO_2$ 계 SCR 촉매의 가스상 원소수은 산화 활성

  • Hong, Hyun-Jo (Department of Chemical Engineering, Kyungil University) ;
  • Ham, Sung-Won (Department of Chemical Engineering, Kyungil University)
  • 홍현조 (경일대학교 화학공학과) ;
  • 함성원 (경일대학교 화학공학과)
  • Received : 2011.10.30
  • Accepted : 2011.11.10
  • Published : 2011.12.30

Abstract

Catalytic activity of $V_2O_5-WO_3/TiO_2$-based SCR catalyst was examined for the oxidation of gas-phase elemental mercury to oxidized mercury. Mercury species was not detected on the commercial SCR catalyst after the oxidation reaction of elemental mercury, regadless of the presence of HCl acting as oxidant and the reaction conditions. This suggests that elemental mercury oxidation by HCl could occur via a Eley-Rideal mechanism with gas phase or weakly-bound mercury on the surface of $V_2O_5-WO_3/TiO_2$ SCR catalyst. The activity for mercury oxidation was significantly increased with the increase of $V_2O_5$ loading, which indicates that $V_2O_5$ is the active site. However, turnover frequency for mercury oxidation was decreased with the increase of $V_2O_5$ loading, indicating the activity for mercury oxidation was strongly dependent on the surface structure of vanadia species. The activity for oxidation of elemental mercury under SCR condition was much less than that under oxidation condition at the same HCl concentration and reaction temperature.

가스상 원소수은의 산화수은으로의 산화에 대한 $V_2O_5-WO_3/TiO_2$ 계 SCR 촉매의 활성이 조사되었다. 상용 SCR 촉매의 경우 원소수은 산화반응에 산화제로 작용하는 HCl의 존재 및 반응조건에 상관없이 반응 후의 모든 촉매에서 수은성분이 검출되지 않았다. 이는 $V_2O_5-WO_3/TiO_2$ 계 SCR 촉매에서 HCl에 의한 원소수은의 산화는 수은이 촉매표면에 거의 흡착되지 않는 Eley-Rideal mechanism에 의해 진행되는 것을 나타내는 결과이다. $V_2O_5$ 함량에 따라 수은 산화활성이 크게 증가되는 것으로부터 $V_2O_5$가 수은산화 반응에 주된 활성점 임을 확인할 수 있었다. 그러나 $V_2O_5$ 함량에 따라 TOF는 감소하는데 이는 촉매 표면에 존재하는 $V_2O_5$의 구조에 따라 수은산화 활성에 차이가 있다는 것을 의미한다. 동일한 반응온도와 HCl 농도에서 산화 조건에 비해 SCR 조건에서 원소수은의 산화활성은 크게 낮은 것으로 나타났다.

Keywords

References

  1. Barthel, J. M. G., Krienke, H., and Kunz, W., Physical Chemistry of Electrolyte Solutions: Modern Aspects, Springer, New York, 1998, pp. 70-74.
  2. Lindberg, S. E., and Stratton, W. J., "Atmospheric Mercury Speciation: Concentrations and Behavior of Reactive Gaseous Mercury in Ambient Air," Environ. Sci. Technol., 32, 49-57 (1998). https://doi.org/10.1021/es970546u
  3. Travis, C. C., and Blaylock, B. P., "Municipal Waste Combustor Emissions: Human Exposure to Mercury and Dioxin," Toxicol. Environ. Chem., 49, 203-216 (1995). https://doi.org/10.1080/02772249509358194
  4. Kim, M. H., Ham, S. W., and Lee, J. B., "Oxidation of Gaseous Elemental Mercury by Hydrochloric Acid over ${CuCl_{2}/TiO_{2}}$-based Catalysts in SCR Process," Appl. Catal. B: Environ., 99, 272-278 (2010). https://doi.org/10.1016/j.apcatb.2010.06.032
  5. Garey, T., in Proceedings of the Air and Waste Management Association's 92nd Annual Meeting, June, Pittsburgh, PA (1999).
  6. O'Dowd, W. J., Hargis, R. A., Granite, E. J., and Pennline, H. W., "Recent Advances in Mercury Removal Technology at the National Energy Technology Laboratory," Fuel Process. Technol., 85, 533-548 (2004). https://doi.org/10.1016/j.fuproc.2003.11.007
  7. Portzer, J. W., Albritton, J. R., Allen, C. C., and Gupta, R. P., "Development of Novel Sorbents for Mercury Control at Elevated Temperatures in Coal-derived Syngas: Results of Initial Screening of Candidate Materials," Fuel Process. Technol., 85, 621-630 (2004). https://doi.org/10.1016/j.fuproc.2003.11.023
  8. Granite, E. J., Pennline, H. W., and Hargis, R. A., "Novel Sorbents for Mercury Removal from Flue Gas," Ind. Eng. Chem. Res., 39, 1020-1029 (2000). https://doi.org/10.1021/ie990758v
  9. Presto, A. A., Granite, E. J., Karash, A., Hargis, R. A., O'Dowd, W. J., and Pennline, H. W., "A Kinetic Approach to the Catalytic Oxidation of Mercury in Flue Gas," Energy Fuels, 20, 1941-1945 (2006). https://doi.org/10.1021/ef060207z
  10. Presto, A. A., and Granite, E. J., "Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas," Platinum Metals Rev., 52(3), 144-154 (2008). https://doi.org/10.1595/147106708X319256
  11. Niksa, S., and Fujiwara, N., J. "A Predictive Mechanism for Mercury Oxidation on Selective Catalytic Reduction Catalysts under Coal-derived Flue Gas," Air & Waste Manage. Assoc., 55, 1866-1875 (2005). https://doi.org/10.1080/10473289.2005.10464779
  12. Straube, S., Hahn, T., and Koeser, H., "Adsorption and Oxidation of Mercury in Tail-end SCR-DeNOx Plants-Bench Scale Investigations and Speciation Experiments," Appl. Catal. B: Environ., 79, 286-295 (2008). https://doi.org/10.1016/j.apcatb.2007.10.031
  13. Lee, C., Srivastava, R., Ghorishi, S., Hastings, T., and Stevens, F., J. "Investigation of Selective Catalytic Reduction Impact on Mercury Speciation under Simulated NOx Emission Control Conditions," Air Waste & Manage. Assoc., 54, 1560-1566 (2004). https://doi.org/10.1080/10473289.2004.10471009
  14. Dunham, G., DeWall, R., and Senior, C., "Fixed-bed Studies of the Interactions Between Mercury and Coal Combustion Fly Ash," Fuel Process. Technol., 82, 197-213 (2003). https://doi.org/10.1016/S0378-3820(03)00070-5
  15. Olsen, E., Miller, S., Sharma, R., Dunham, G., and Benson, S., J. "Catalytic Effects of Carbon Sorbents for Mercury Capture," Hazard. Mater., 74, 61-79 (2000). https://doi.org/10.1016/S0304-3894(99)00199-5
  16. Kellie, S., Cao, Y., Duan, Y., Li, L., Chu, P., Mehta, A., Carty, R., Riley, J., and Pan, W., "Factors Affecting Mercury Speciation in a 100-MW Coal-fired Boiler with Low-NOx Burners," Energy Fuels, 19, 800-806 (2005). https://doi.org/10.1021/ef049769d
  17. Ghorishi, S., Lee, C., Jozewicz, W., and Kilgroe, J., "Effects of Fly Ash Transition Metal Content and Flue Gas HCl/${SO_{2}}$ Ratio on Mercury Speciation in Waste Combustion," Environ. Eng. Sci., 22, 221-231 (2005). https://doi.org/10.1089/ees.2005.22.221
  18. Zhao, Y., Mann, M., Pavlish, J., Mibeck, B., Dunham, G., and Olson, E., "Application of Gold Catalyst for Mercury Oxidation by Chlorine," Environ. Sci. Technol., 40, 1603-1608 (2006). https://doi.org/10.1021/es050165d
  19. Niksa, S., and Fujiwara, N., "Predicting Extents of Mercury Oxidation in Coal-derived Flue Gases," Air & Waste Manage. Assoc., 55, 930-939 (2005). https://doi.org/10.1080/10473289.2005.10464688
  20. Hocquel, M., "The Behaviour and Fate of Mercury in Coal-fired Power Plants with Downstream Air Pollution Control Devices," VDI Verlag: Dusseldorf, Germany, 2004.
  21. Eswaran S., and Stenger, H., "Understanding Mercury Conversion in Selective Catalytic Reduction (SCR) Catalysts," Energy Fuels., 19, 2328-2334 (2005). https://doi.org/10.1021/ef050087f
  22. Senior, C., J. "Oxidation of Mercury Across Selective Catalytic Reduction Catalysts in Coal-fired Power Plants," Air & Waste Manage. Assoc., 56, 23-31 (2006). https://doi.org/10.1080/10473289.2006.10464437
  23. Hong, H. J., Ham, S. W., Kim, M. H., Lee, S. M., and Lee, J. B., "Characteristics of Commercial SCR Catalyst for the Oxidation of Gaseous Elemental Mercury with Respect to Reaction Conditions," Korean J. Chem. Eng., 27(4), 1117-1122 (2010). https://doi.org/10.1007/s11814-010-0175-x
  24. Mullenberg, G. E., (ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, Minnesota, 1978.
  25. Sanati, M., and Andersson, A., "Ammoxtoation of Toluene over ${TiO_{2}}$(B)-supported Vanadium Oxide Catalysts," J. Mol. Catal., 59, 223-255 (1990).
  26. Centi, G., "Nature of Active Layer in Vanadium Oxide Supported on Titanium Oxide and Control of its Reactivity in the Selective Oxidation and Ammoxidation of Alkylaromatics," Appl. Catal. A: Gen., 147, 267-298 (1996). https://doi.org/10.1016/S0926-860X(96)00179-2
  27. Wachs, I. E., "Raman and IR Studies of Surface Metal Oxide Species on Oxide Supports: Supported Metal Oxide Catalysts," Catal. Today, 27, 437-455 (1996). https://doi.org/10.1016/0920-5861(95)00203-0
  28. Dunn, J. P., Koppula, P. R., Stenger, H. G., and Wachs, I. E., "Oxidation of Sulfur Dioxide to Sulfur Trioxide over Supported Vanadia Catalysts," Appl. Catal. B: Environ., 19(2), 103-117 (1998). https://doi.org/10.1016/S0926-3373(98)00060-5
  29. Sazanova, N., Tsykoza, L., Simakov, A., Garannik, G., and Ismagilov, Z., "Relationship Between Sulfur Dioxide Oxidation and Selective Catalytic NO Reduction by Ammonia on ${V_{2}O_{5}-TiO_{2}}$ Catalysts Doped with ${WO_{3}}$ and ${Nb_{2}O_{5}}$," React. Kinet. Catal. Lett., 52(1), 101-106 (1994). https://doi.org/10.1007/BF02129856