DOI QR코드

DOI QR Code

Environmental Assessment and Characteristic of Refuse Derived Fuel by Mixed Biomass with Binder

바이오매스에 바인더 첨가에 따른 폐기물 고형연료 특성 및 환경성평가

  • Lee, Hyung-Don (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Cho, Joon-Hyung (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Kim, In-Deuk (Busan Metropolitan City Yeonje-gu Environment & Sanitation division) ;
  • Kim, Yun-Soo (Kolon Engineering & Construction) ;
  • Oh, Kwang-Joong (Department of Civil and Environmental Engineering, Pusan National University)
  • 이형돈 (부산대학교 사회환경시스템공학과) ;
  • 조준형 (부산대학교 사회환경시스템공학과) ;
  • 김인득 (부산광역시 연제구청 환경위생과) ;
  • 김윤수 (코오롱건설 토목사업본부) ;
  • 오광중 (부산대학교 사회환경시스템공학과)
  • Received : 2011.09.27
  • Accepted : 2011.10.18
  • Published : 2011.12.30

Abstract

The total area of forest land in Korea is 64.2%, and significant forest resources can continuously be produced. However our country didn't separate the recyclable waste wood and was illegal landfill or incinerated. In this study, waste-wood and rice husk of biomass and low-grade-anthracite made refuse derived fuel by mixing and compressing. In addition, the binding effect of binders and additives were analyzed. Physical and chemical characteristics of manufactured refuse derived fuel were analyzed and evaluated suitability by compared with quality standards. A result of change with compressed and relaxed density, added 20% anthracite and 10% rice husk is optimal density change and average density increased large range when 20 wt.% P.V.A., guargum, molasses and 10 wt.% starch were added. All fuel samples be distributed over 3,500 kcal/kg LHV and grade of No. 3~4 fuels appeared. A result of the characteristics of physical and chemical compressed biomass refuse derived fuel with addictive, 12.9% of durability improvement appeared when is mixing asphalt and 5.8% of durability improvement appeared when is mixing rice bran by pretreatment of NaOH 5%.

우리나라는 산림총면적이 전 국토의 64.2%로 목재자원은 지속적으로 생산가능한 중요한 자원이지만 현재 재활용 가능한 폐목재가 분리, 수거되지 않고, 불법매립 및 소각 처리되고 있는 실정이다. 따라서 본 연구에서는 폐목재에 바이오매스자원인 왕겨와 저품위 무연탄을 혼합 압축하여 고형연료를 제조하였으며, 고형연료 제조 시 바인더와 첨가제의 바인딩효과를 분석하였다. 이때, 고형연료의 물리, 화학적 특성을 분석하였으며, 연료기준치와의 비교를 통해 적합성을 판단하였다. 실험결과 무연탄 20%, 왕겨 10%에서 최적의 밀도를 보였으며, P.V.A. (Polyvinyl alcohol), 구아검, 당밀 20 wt.%, 전분 10 wt.% 첨가 시 가장 우수한 것으로 나타났다. 대부분의 샘플이 연료 품질기준 4등급인 저위발열량 3,500 kcal/kg을 만족하는 것으로 나타났으며, 아스팔트 첨가 시 12.9%의 내구성 향상이 나타났고, NaOH 5% 쌀겨 첨가 시 최대 5.8%의 내구성이 향상되는 것으로 나타났다.

Keywords

References

  1. Kim, K. S., Choi, H. C., Bae, Y. J., Ahn, J. H., and Cho, H. L., "Adsorption Property of Rice-hull Activated Carbon," J. KSWQ SEP., 13(3), 293-298 (1997).
  2. Oh, K. J., Lee, H. D., Seo, J. B., Jeon, S. B., and Cho, S. W., "Pyrolytic Reaction Characteristics of a Mixed Fuel of Municipal Solid Wastes and Low-grade Anthracite," Korean Soc. Environ. Eng., 32(11), 1046-1053 (2010).
  3. Cho, S. W., and Oh, K. J., "A Study on the Compression and Characteristics of Municipal Solid Waste for Thermoselect Process," Korean J. Environ. Health Soc., 25(1), 56-59 (1999).
  4. Jaan, K., Priit, K., Aare, A., Viktor, L., Peter, K., Lubomir, S., and Ulo, K., "Determination of Physical, Mechanical and Burning Characteristics of Polymeric Waste Material Briquettes," Estonian J. Eng., 16(4), 307-316 (2010). https://doi.org/10.3176/eng.2010.4.06
  5. Milos, M., and Peter, K., "Influence of Structural Parameters in Compacting Process on Quality of Biomass Pressings," J. Appl. Math., 3(3), 87-96 (2010).
  6. Chin, O., and Siddiqui, K. M., "Characteristics of Some Biomass Briquettes Prepared under Modest Die Pressures," Biomass and Bioenergy, 18(3), 223-228 (2000). https://doi.org/10.1016/S0961-9534(99)00084-7
  7. Thomas, M., and Van der Poel, A., "Physical Quality of Pelleted Animal Feed 1. Criteria for Pellet Quality," Anim. Feed Sci. Technol., 61(1-4), 89-112 (1996). https://doi.org/10.1016/0377-8401(96)00949-2
  8. ASAE S269.4, "Cubes, Pellet and Crumbles-definitions and Methods for Determining Density, Durability, and Moisture Content," ASAE Standards, 525-527 (1998).
  9. Michael, T., Fabienne R., Peter, D. J., Hans, H., and Thorsten, B., "Comparative Study of Durability Test Methods for Pellet and Briquettes," Biomass and Bioenergy, 30(11), 964-972 (2006). https://doi.org/10.1016/j.biombioe.2006.06.008
  10. Tabil, L., and Sokhansanj, "Process Conditions Affecting the Physical Quality of Alfalfa Pellets," Appl. Eng. Agric., 12(3), 345-350 (1996). https://doi.org/10.13031/2013.25658
  11. Colley, Z., Fasina, O. O., Bransby, D., and Lee, Y. Y., "Moisture Effect on the Physical Characteristics of Switchgrass Pellets," Transactions of the ASABE, 49(6), 1845-1851 (2006). https://doi.org/10.13031/2013.22271
  12. Karen, F., Vida, S., and Jim, S., "Fuel Pelletization with a Binder: Part I-Identification of a Suitable Binder for Spent Mushroom Compost-coal Tailing Pellets," Energy & Fuels, 23 (6), 3195-3202 (2009). https://doi.org/10.1021/ef900020k
  13. Zhang, X., Xu, D., Xu, Z., Cheng, Q., "The Effect of Different Treatment Conditions on Biomass Binder Preparation for Lignite Briquette," Fuel Proc. Technol., 73(3), 185-196 (2001). https://doi.org/10.1016/S0378-3820(01)00179-5