DOI QR코드

DOI QR Code

숙신산 알킬 하프-아마이드 유도체의 합성 및 해수에 대한 방청성능

Synthesis and Anti-corrosion Properties of Succinic Acid Alkyl Half-amide Derivatives

  • 백승엽 (한국화학연구원 그린화학연구단 산업바이오화학연구센터) ;
  • 김영운 (한국화학연구원 그린화학연구단 산업바이오화학연구센터) ;
  • 정근우 (한국화학연구원 그린화학연구단 산업바이오화학연구센터) ;
  • 유승현 (한국화학연구원 그린화학연구단 산업바이오화학연구센터) ;
  • 김남균 (한국화학연구원 그린화학연구단 산업바이오화학연구센터)
  • Baek, Seung-Yeob (Green Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Kim, Young-Wun (Green Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Chung, Keun-Wo (Green Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Yoo, Seung-Hyun (Green Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT) ;
  • Kim, Nam-Kyun (Green Chemistry Research Division, Surfactant & Lubricant Research Team, KRICT)
  • 투고 : 2011.10.25
  • 심사 : 2011.11.23
  • 발행 : 2011.12.30

초록

아마이드 유도체는 방청성능 및 윤활성능이 우수하여 금속가공유 및 유압작동유등의 첨가제로 많이 사용되고 있다. 본 연구에서는 광유계 윤활기유의 방청제로 사용하기 위하여 알킬 무수 숙신산과 여러 가지 아민과의 링개환 반응을 행하여 카르복실 그룹과 아마이드 그룹을 동시에 포함하는 숙신산 알킬 하프-아마이드 유도체들을 97% 이상의 수율로 합성하였으며 합성구조에 따라 1 중량% 농도범위에서 광유계 오일에 용해되었다. 합성 유도체의 구조는 $^1H$-NMR 및 FT-IR 스펙트럼으로 행하였으며 GC 크로마토그램을 통하여 화합물의 순도를 확인하였다. 또한, 합성 유도체의 해수에 대한 방청성능을 ASTM D665 표준방법과 무게 중량법으로 평가한 결과, 합성 유도체의 농도가 증가하고 알킬기의 사슬이 짧고 2차 아민으로 합성한 숙신산 알킬 하프-아마이드의 방청성능이 1차 아민으로 합성한 유도체보다 상대적으로 방청성능이 우수하였다. 무게 중량법으로 평가한 방청효율% (IE%)는 알킬기의 사슬이 짧을수록 우수한 방청효율을 나타내었으며 구조에 따라 방청효율에 차이를 나타내었다. 40 ppm 농도를 첨가한 오일의 IE%는 최고 93% 이상이었다. 또한, 발청속도(Corrosion Rate, CR)는 알킬기의 사슬이 짧을수록 낮은 값을 나타내어 합성 유도체 40 ppm 농도를 첨가한 오일의 CR 값은 최고 0.5 mm/year 이하로 나타났다.

Several amide derivatives have been used as additives for base oil of metal working fluids and pressure working oils. In this paper, a series of succinic acid alkyl half-amide derivatives were synthesized as over 97% yields by ring-opening reaction of succinic anhydride and several amines and were soluble in 100 N base oil within 1 wt% concentration. The structures of the synthesized amides were confirmed by $^1H$-NMR, FT-IR spectrum and GC analysis. Anti-corrosion properties of the amides in sea water were evaluated through ASTM D665 method and weight loss method. As the results of anti-corrosion properties, the properties of the amides with shorter alkyl chain and high concentration showed better performance than those with longer alkyl chain and low concentration. Also, the dialkyl amides showed better anti-corrosion properties than those of the monoalkyl amides. Inhibition efficiency% (IE%) was over 93% in the concentration of 40 ppm and corrosion rate (CR) was below 0.5 mm/year in the same concentration.

키워드

참고문헌

  1. C. A. Houston & Associates, Inc, Mckinsey report, "Agglomerations," The International Detergent Newsletter July/Aug, (2008).
  2. Leggett, J., "Half Gone: Oil, Gas, Hot Air and the Global Energy Crisis," Portobello Books, London (2005).
  3. Meadows, D., "The Limits to Growth: the 30-year Update," Chelsea Green (2004).
  4. Kim, B.-J., et al., "Renewable and Sustainable Resource Derived Carbon Neutral Adhesive Materials," J. Adhesion and Interface, 11, 2, 76-83 (2010).
  5. Afton Chemical Corp., "Emulsifier/Demulsifier System," KR-A-1020060048672 (2006).
  6. Ciba Holding Inc., "Succinic Acid Semi-amides as Anti-corrosive Agents," KR-A-1020050046781 (2005).
  7. Robson and Robert, "Ester-free Synthetic Lubricating Oils Comprising Polybutenyl Substituted Succinic Acid or Anhydride and Hydrocarbon Polymer," U. S. Patent No. 5,972,852 (1999).
  8. Anderson et al., "Succinic Acid Derivatives and their Use as Surfactants," U.S. Patent No. 5,798,331 (1998).
  9. Ethyl Corp., "Lubricant Compositions of Enhanced Performance Capabilities," KR-A-1019960010840 (1996).
  10. Hotten, B., "Rust Inhibiting Lubrication Oil Additives," U.S. Patent No. 3,785,981 (1974).
  11. Maurits Krukziener, "Lubricating Oil Composition," U.S. Patent No. 3,331,776 (1967).
  12. Saji, V. S., "A Review on Recent Patents in Corrosion Inhibitors," Recent Pat. Corros. Sci., 2, 6-12 (2010). https://doi.org/10.2174/1877610801002010006
  13. Auinat, M., "Enhanced Inhibition of Zinc Corrosion in Alkaline Solutions Containing Carboxylic Acid Modified PEG," J. Electrochem. Soc., 152, A1158-A1164 (2005). https://doi.org/10.1149/1.1900963
  14. Dickie, Ray A., and Floyd, F. Louis, "Polymeric Materials for Corrosion Control: An Overview," ACS Symposium Series; American Chemical Society: Washington, DC, 1-16 (1986).
  15. Garrecht et al., "Alkyl or Alkenyl Succinic Acids as Corrosion Inhibitors for Oxygenated Fuels," U. S. Patent No. 5,080,686 (1992).
  16. Appa Rao, B. V., et al., "Electrochemical and Surface Analytical Studies of the Self-assembled Monolayer of 5-methoxy-2-(octadecylthio)benzimidazole in Corrosion Protection of Copper," Electrochimica Acta, 55, 620-631 (2010). https://doi.org/10.1016/j.electacta.2009.09.007
  17. Alvarez-Bustamante, R., et al., "Electrochemical Study of 2-mercaptoimidazole as a Novel Corrosion Inhibitor for Steels," Electrochimica Acta, 54, 5393-5399 (2009). https://doi.org/10.1016/j.electacta.2009.04.029
  18. Rostamizadeh, S., et al., "Aqueous ${NaHSO_{4}}$ Catalyzed Regioselective and Versatile Synthesis of 2-thiazolamines," Monatsh chem., 139, 1241-1245 (2008). https://doi.org/10.1007/s00706-008-0906-4
  19. Ashassi-Sorkhabia, H., et al., "Effect of Some Pyrimidinic Shciff Bases on the Corrosion of Mild Steel in Hydrochloric Acid Solution," Electrochimica Acta, 50, 3446-3452 (2005). https://doi.org/10.1016/j.electacta.2004.12.019
  20. Yildirim, A., and Cetin, M., "Synthesis and Evaluation of New Long Alkyl Side Chain Acetamide, Isoxazolidine and Isoxazoline Derivatives as Corrosion Inhibitors," Corros. Sci., 50, 155-165 (2008). https://doi.org/10.1016/j.corsci.2007.06.015
  21. Quraishi, M. A., and Ansari, F. A., "Fatty Acid Oxadiazoles as Corrosion Inhibitors for Mild Steel in Formic Acid," J. Appl. Electrochem., 36, 309-314 (2006). https://doi.org/10.1007/s10800-005-9065-z
  22. Ali, S. A., et al., "The Isoxazolidines: the Effects of Steric Factor and Hydrophobic Chain Length on the Corrosion Inhibition of Mild Steel in Acidic Medium," Corros. Sci., 47, 2659-2678 (2005). https://doi.org/10.1016/j.corsci.2004.11.007
  23. Li, P., et al., "Electrochemical Impedance and X-ray Photoelectron Spectroscopic Studies of the Inhibition of Mild Steel Corrosion in Acids by Cyclohexylamine," Electrochimica Acta, 42. 4, 605-615 (1997). https://doi.org/10.1016/S0013-4686(96)00205-8
  24. Koek, M. M., et al., "Metabolic Profiling of Ultrasmall Sample Volumes with GC/MS: From Microliter to Nanoliter Samples," Anal. Chem., 82, 156-162 (2010). https://doi.org/10.1021/ac9015787
  25. Niknam, K., et al., "Silica-bonded S-sulfonic Acid as a Recyclable Catalyst for the Silylation of Hydroxyl Groups with Hexamethyldisilazane (HMDS)," Can. J. Chem., 88, 164-171 (2010). https://doi.org/10.1139/V09-162
  26. American Society for Testing and Materials, ASTM Designation, D665-98, Philadelphia (2000).
  27. Khaled, K. F., "Experimental and Atomistic Simulation Studies of Corrosion Inhibition of Copper by a New Benzotriazole Derivative in Acid Medium," Electrochim. Acta, 54, 4345-4352 (2009). https://doi.org/10.1016/j.electacta.2009.03.002
  28. Quraishi, M. A., and Jamal, D., "Fatty Acid Triazoles: Novel Corrosion Inhibitors for Oil Well Steel (N-80) and Mild Steel," J. Am. Oil Chem. Soc., 77, 1107-1111 (2000). https://doi.org/10.1007/s11746-000-0174-6
  29. Zhang, Q. B., and Hua, Y. X., "Corrosion Inhibition of Mild Steel by Alkylimidazolium Ionic Liquids in Hydrochloric Acid," Electrochim. Acta, 54, 1881-1887 (2009). https://doi.org/10.1016/j.electacta.2008.10.025
  30. Shyamala, M., and Arulanantham, A., "Eclipta Alba as Corrosion Pickling Inhibitor on Mild Steel in Hydrochloric Acid," J. Mater. Sci. Technol., 25, 633-636 (2009).
  31. Amitha Rani, B. E., and Bharathi Bai J. Basu, "Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview," International J. Corrosion, 1-15 (2012).
  32. Khaled, K. F., "Molecular Simulation, Quantum Chemical Calculations and Electrochemical Studies for Inhibition of Mild Steel by Triazoles," Electrochimica Acta, 53, 3484-3492 (2008). https://doi.org/10.1016/j.electacta.2007.12.030
  33. Nmai, C. K., "Multi-functional Organic Corrosion Inhibitor," Cement & Concrete Composites, 26, 199-207 (2004). https://doi.org/10.1016/S0958-9465(03)00039-8
  34. Allachi, H., et al., "Protection Against Corrosion in Marine Environments of AA6060 Aluminium Alloy by Cerium Chlorides," J. Alloys Compd., 491, 223-229 (2010). https://doi.org/10.1016/j.jallcom.2009.11.042
  35. Tauseef, A., et al., "Corrosion Behavior of Zr-Cu-Ni-Al Bulk Metallic Glasses in Chloride Medium," J. Alloys Compd., 489, 596-599 (2010). https://doi.org/10.1016/j.jallcom.2009.09.119
  36. Yin, Z. F., et al., "Galvanic Corrosion Associated with SM 80SS Steel and Ni-based Alloy G3 Couples in NaCl Solution," Electrochim. Acta, 53, 6285-6292 (2008). https://doi.org/10.1016/j.electacta.2008.04.029
  37. Baek, S.-Y., and Kim, Y.-W., "Synthesis and Lubricating Properties of Succinic Acid Alkyl Ester Derivatives" Appl. Chem. Eng., 22, 196-202 (2011).
  38. Baek, S.-Y., and Kim, Y.-W., "Synthesis and Anti-corrosion Properties of Succinic Acid Alkyl Half-Ester Derivatives," Appl. Chem. Eng., 22, 367-375 (2011).