DOI QR코드

DOI QR Code

Integrated Surface-Groundwater Hydrologic Analysis for Evaluating Effectiveness of Groundwater Dam in Ssangcheon Watershed

쌍천 지하댐의 효용성 평가를 위한 지표수-지하수 통합 수문해석

  • Kim, Nam-Won (Water Resources Research Div. Korea Institute of Construction Technology) ;
  • Na, Han-Na (Water Resources Research Div. Korea Institute of Construction Technology) ;
  • Chung, Il-Moon (Water Resources Research Div. Korea Institute of Construction Technology)
  • 김남원 (한국건설기술연구원 수자원연구실) ;
  • 나한나 (한국건설기술연구원 수자원연구실) ;
  • 정일문 (한국건설기술연구원 수자원연구실)
  • Received : 2011.11.10
  • Accepted : 2011.12.22
  • Published : 2011.12.28

Abstract

In this study, the usefulness of underground dam as a means for the sustainable development of groundwater, and its performance in the management of groundwater resources were analyzed. The fully integrated SWAT-MODFLOW was applied to the Ssangcheon watershed in Korea to evaluate the effectiveness of groundwater dam construction. After construction, the groundwater level raised in the upstream area of groundwater dam while lowered in the downstream area. Also, it is shown that the exchange rate of river-aquifer interactions increased in the upper area of the dam. Since the storage capacity of the aquifer largely increased in the upper area of the dam, the exploitable groundwater could be greatly increased as much. This study demonstrated that a groundwater dam was a very useful measure to increase the available storativity of groundwater aquifers. It also represented that the combined analysis using SWAT-MODFLOW was helpful for the design and opeation of groundwater dam in the Ssangcheon watershed.

지속가능한 지하수 자원의 개발과 관리능력의 수단으로서의 지하댐의 이용과 그 효율성에 관한 분석을 수행하기 위해 완전연동형 지표수-지하수 통합해석 모형인 SWAT-MODFLOW를 쌍천유역에 적용하여 지하댐 건설에 따른 영향평가를 수행하였다. 지하댐 건설 후에는 댐 상류의 지하수위 상승이 일어나며 하류부는 지하수가 감소하는 현상이 나타난다. 이에 따라 지표수-지하수의 상호교환량은 상류에서 더 커지는 것으로 나타났다. 지하댐 건설에 따라 상류부 대수층의 저류량이 증가함으로써 가용한 지하수의 개발량은 그만큼 증가하는 것으로 나타났다. 본 연구를 통해 지하댐의 기능이 대수층의 가용 저류량을 증대시키는 매우 유용한 시설임을 확인할 수 있었고, 통합 수문해석 방법론은 지하댐 건설에 따른 영향 뿐 아니라 설계와 운영을 평가하기 위한 적절한 기법으로 이용될 수 있을 것으로 판단된다.

Keywords

References

  1. Arnold, J.G., Allen, P.M. and Bernhardt G. (1993). A comprehensive surface- groundwater flow model. Journal of Hydrology, v.142, p.47-69. https://doi.org/10.1016/0022-1694(93)90004-S
  2. Chung, I. M., Lee, J. and Kim, N.W. (2011). Estimating exploitable groundwater amount in Musimcheon watershed by using an integrated surface watergroundwater Model. Econ. Environ. Geol., v.44, n.5, p.433-442. https://doi.org/10.9719/EEG.2011.44.5.433
  3. El-Hames, A.S. (2011). Numerical Solution for Water Table Rise Estimation Behind Deep Underground Dam, Groundwater, DOI: 10.1111/j.1745-6584.2011. 00861.x
  4. Giovanni, F., Marco, G., Francesca, C. and Fabio, C. (2008). A methodology for the pre-selection of suitable sites for surface and underground small dams in arid areas: A case study in the region of Kidal, Mali. Physics and Chemistry of the Earth, v.33, p.74-85. https://doi.org/10.1016/j.pce.2007.04.014
  5. Im, H. (2002). A study on the groundwater flow in a basin with subsurface dam, Ms. Thesis, Dongkuk University, p.80-81.
  6. Jeon, S., Koo, M., Kim, Y. and Kang, I. (2005). Statistical analysis of aquifer characteristics using pumping test data of national groundwater monitoring wells for korea, Journal of KoSSGE, v.10, n.6, p.32-44
  7. Kang, S. (2007). Evaluation of groundwater dam by using Groundwater Modeling, Master Thesis, Kongju National Univ., p.26-48.
  8. KIGAM (2001). Gangneung-Sokcho geologic map(1:250,000).
  9. Kim, J., Kim, M., Chung, I.-M., Kim, N. and Jeong, G.-C. (2009). An Analysis of Groundwater Level Fluctuation Caused by Construction of Groundwater Dam, The Journal of Engineering Geology, v.19, n.2, p.227-233.
  10. Kim, N.W., Chung, I.M., Won, Y.S. and Arnold, J.G. (2008). "Development and application of the integrated SWAT-MODFLOW model." Journal of Hydrology, v.356, p.1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024
  11. K-Water (1999). A Study on the Groundwater Recharge and Increasing Usage, 198p.
  12. K-Water (2004). Sustainable groundwater development and recharge technology, p.2-15.
  13. McDonald, M.G., and Harbaugh., A.W. (1988). A Modular Three-Dimensional Finite- Difference Ground-water Flow Model. U.S. Geological Survey Techniques of Water Resources Investigations Report Book 6, Chapter A1, 528p.
  14. MEST (2005). Development of a technique of securing eco-friendly water resources, SWRRC Report, p.87-90.
  15. Park, C., Jeong, G., Park, J. and Boo, S. (2006), The function of groundwater dam and role, Magazine of Korea Water Resources Association, p.47-50.
  16. Park, M. (2003). A study on the groundwater flow characteristics around groundwater dam, Master Thesis, Kwandong Univ., 51p.

Cited by

  1. Groundwater-surface water interaction of the upstream area of the dam composed of accumulated sediments and reservoir in the upstream area of Searsvill Dam vol.15, pp.1, 2013, https://doi.org/10.17663/JWR.2013.15.1.043
  2. A Study on the Flow and Dispersion in the Coastal Unconfined Aquifer (Development and Application of a Numerical Model) vol.49, pp.1, 2016, https://doi.org/10.3741/JKWRA.2016.49.1.61
  3. Effects of Irrigation Reservoirs and Groundwater Withdrawals on Streamflow for the Anseongcheon Upper Watershed vol.35, pp.4, 2015, https://doi.org/10.12652/Ksce.2015.35.4.0835
  4. Assessment of Effects of Groundwater Pumping from Deep Aquifer on Streamflow Depletion vol.48, pp.9, 2015, https://doi.org/10.3741/JKWRA.2015.48.9.769