DOI QR코드

DOI QR Code

Identification of Advanced Argillic-altered Rocks of the Haenam Area, Using by ASTER Spectral Analysis

ASTER 분광분석을 통한 해남지역 강고령토변질 암석의 식별

  • Lee, Hong-Jin (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Eui-Jun (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Moon, Dong-Hyeok (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이홍진 (한국지질자원연구원 국토지질연구본부) ;
  • 김의준 (한국지질자원연구원 광물자원연구본부) ;
  • 문동혁 (한국지질자원연구원 광물자원연구본부)
  • Received : 2011.10.10
  • Accepted : 2011.12.12
  • Published : 2011.12.28

Abstract

The Haenam epithermal mineralized zone is located in the southwestern part of South Korea, and hosts low sulfidation epithermal Au-Ag deposit (Eunsan-Moisan) and clay quarries (Okmaesan, Seongsan, and Chunsan). Epithermal deposits and accompanying hydrothermal alteration related to Cretaceous volcanism caused large zoned assemblages of hydrothermal alteration minerals. Advanced argillic-altered rocks with mineral assemblages of alunite-quartz, alunite-dickite-quartz, and dickite-kaolinite-quartz exposed on the Okmaesan, Seongsan, and Chunsan area. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), with three visible and near infrared bands, six shortwave infrared bands, and five thermal infrared bands, was used to identify advanced argillic-altered rocks within the Haenam epithermal mineralized zone. The distinct spectral features of hydrothermal minerals allow discrimination of advanced argillic-altered rocks from non-altered rocks within the study area. Because alunite, dickite, and kaolinite, consisting of advanced argillic-altered rocks within the study area are characterized by Al-O-H-bearing minerals, these acid hydrothermal minerals have a strong absorption feature at $2.20{\mu}m$. The band combination and band ratio transformation cause increasing differences of DN values between advanced argillic-altered rock and non-altered rock. The alunite and dickite-kaolinite of advanced argillic-altered rocks from the Okmaesan, Seongsan, and Chunsan have average DN values of 1.523 and 1.737, respectively. These values are much higher than those (1.211 and 1.308, respectively) of non-altered area. ASTER images can remotely provide the distribution of hydrothermal minerals on the surface. In this way good relation between ASTER spectra analysis and field data suggests that ASTER spectral analysis can be useful tool in the initial steps of mineral exploration.

해남 천열수 광화대는 우리나라 남서부에 위치하고 있으며, 저유황계 천열수 금-은 광상(은산-모이산)과 점토광상(옥매산, 성산, 춘산)을 배태하고 있다. 백악기 화산활동과 관련된 천열수 광상과 이와 함께 수반되는 열수변질작용은 열수변질광물들로 구성된 대규모의 대상분포를 야기 시켰다. 명반석-석영, 명반석-딕카이트-석영, 딕카이트-카올리나이트-석영의 광물조합을 갖는 강고령토변질작용으로 변질된 암석들은 옥매산, 성산, 춘산지역에 노출되어 있다. 세 개의 가시근적외선 밴드, 여섯 개의 단파장적외선 밴드, 다섯 개의 열적외선 밴드로 구성된 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)는 해남 천열수 광화대 내 강고령토변질작용을 받은 암석들을 식별하는데 사용되었다. 열수변질광물들의 특정한 분광특성들은 연구지역내 변질 받지 않은 암석들로부터 강고령 토변질작용을 받은 암석들의 식별을 가능하게 한다. 연구지역 내 강고령토변질작용을 받은 암석들을 주로 구성하는 명반석, 딕카이트, 카올리나이트는 대표적인 함 Al-O-H 광물로 $2.20{\mu}m$에서 강한 흡수특성을 갖는다. ASTER 밴드조합 및 밴드비 변환은 강고령토변질작용을 받은 암석과 비변질 암석으로부터 획득된 DN 값의 차이를 증가시킨다. 옥매산, 성산, 춘산지역으로부터 강고령토변질작용을 받은 암석들 내 명반석과 딕카이트-카올리나이트는 각각 1.523과 1.737의 평균 DN 값을 갖는다. 이러한 DN 값은 비변질 지역으로부터 획득된 DN (각각 평균 1.211과 1.308)값에 비해 훨씬 높다. ASTER 영상은 지표환경에서 열수변질광물의 분포특성을 원격적으로 제공할 수 있다. 이러한 측면에서 ASTER 분광분석과 야외지질조사 결과의 좋은 상관성은 ASTER 분광분석이 광물자원탐사의 초기 단계에서 유용한 탐사방법이 될 수 있음을 제시한다.

Keywords

References

  1. Abrams, M.J. and Brown, D. (1984) Silver Bell, Arizona, porphyry copper test site report, in the Joint NASA/Geosat Test Case Project, final report, chapter 4, p. 4-1 to 4-73. The American Association of Petroleum Geologists, Tulsa, Okla.
  2. Abrams, M.J., Brown, L., Lepley, R. and Sadowski, P. (1983) Remote sensing for porphyry copper deposits in Southern Arizona. Economic Geology, v.78, p.591-604. https://doi.org/10.2113/gsecongeo.78.4.591
  3. Bowden, C.D. (2007) Epithermal systems of the Seongsan district, South Korea; an investigation on the geological setting and spatial and temporal relationship between high and low sulfidation systems. Unpublished Ph.D. thesis, James Cook University, Australia, 334p.
  4. Buchanan, L.J. (1981) Precious metal deposits associated with volcanic environments in the Southwest. Arizona Geological Society Digest 14, p.237-262.
  5. Clark, R.N., Swayze, G.A., Gallagher, A., King, T.V.V. and Calvin, W.M. (1993) The U.S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 microns: U.S. Geological Survey Open File Report 93-592, 1340 p., http://speclab.cr.usgs.gov (August 1999).
  6. Deyell, C.L., Rye, R.O., Landis, G.P. and Bissig, T. (2005) Alunite and the role of magmatic fluids in the Tambo high-sulfidation deposit, El Indio-Pascua belt, Chile. Chemical geology, v.215, p.185-218. https://doi.org/10.1016/j.chemgeo.2004.06.038
  7. Di Tommaso, I.D. and Rubinstein, N. (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina: Ore Geology Reviews, v.32, p.275-290. https://doi.org/10.1016/j.oregeorev.2006.05.004
  8. Fujisada, H.F. (1995) Design and performance of ASTER instrument, in Proceedings of SPIE. Paris, France, International Society Optical Engineering, v.2583, p.16-25.
  9. Hedenquist, J.W., Arribas R, A. and Gonzalez-Urien, E. (2000) Exploration for epithermal gold deposits. in Hagemann, S.G. and Brown, P.E., eds., Gold in 2000. Reviews in Economic Geology, v.13, p.245-277.
  10. Hunt, G.R. (1977) Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, v.42, n.3, p.501-513. https://doi.org/10.1190/1.1440721
  11. Hunt, G.R. and Ashley, R.P. (1979) Spectra of altered rocks in the visible and near infrared. Economic Geology, v.74, p.1613-1629. https://doi.org/10.2113/gsecongeo.74.7.1613
  12. Hunt, G.R., Salisbury, J.W., and Lenhoff, C.J. (1971) Visible and near-infrared spectra of minerals and rocks: III. Oxides and hydroxides: Modern Geology, v. 2, p. 195-205.
  13. KIGAM (2009) Technical development on the life cycle of the Haenam epithermal gold mineralized area and hydrothermal clay resources. Korea Institute of Geoscience and Mineral Resources, 182p.
  14. Kim, C.S. and Choi, S.G. (2009) Potassium-Argon ages of the epithermal gold-silver mineralization in the Haenam-Jindo area, Southwestern Korea. Resource Geology, v.59, p.415-421. https://doi.org/10.1111/j.1751-3928.2009.00108.x
  15. Kim, C.S. (2011) Genesis of the Cretaceous low-sulfidation epithermal Au-Ag deposit in the Haenam district, Republic of Korea: Implication for Se type (Eunsan) and Te type (Moisan). Unpublished Ph.D. thesis, Korea University, Korea, 177p.
  16. Kim, I.J. (1992) Alteration zoning, mineral assemblage and geochemistry of the hydrothermal clay deposits related to Cretaceous felsic magmatism in the Haenam area, southwest Korea. Journal of Korean Institute of Mining Geology, v.25, p.397-416.
  17. Kim, I.J. and Nagao, K. (1992) K-Ar ages of the hydrothermal clay deposits and the surrounding igneous rocks in southwest Korea. Journal of Petrological Society of Korea, v.1, p.58-70.
  18. Kirwin, D.J. and Spadafora, M.J. (1994) Progress report concerning the precious metal potential of clayalunite deposits in southwest Korea. Indochina Goldfields Ltd. company report, unpublished.
  19. Koh, S.M. (1996) Geochemical characteristics of the Cretaceous volcanic rocks and Bukok hydrothermal deposits in the Haenam volcanic field, Chollanamdo, Korea. Unpublished Ph.D. thesis, Seoul National University, Korea, 181p.
  20. Lowell, J.D. and Guilbert, J.M. (1970) Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, v.65, p.373-408. https://doi.org/10.2113/gsecongeo.65.4.373
  21. Mars, J.C. and Rowan, L.C. (2006) Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, v.2, p.161-186. https://doi.org/10.1130/GES00044.1
  22. Ninomiya, Y. (2003) Rock type mapping with indices defined for multispectral thermal infrared aster data: case studies. Proceedings of SPIE, the International Society for Optical Engineering, v.4886, p.123-132.
  23. Panther, C.A., Rovillos, J.B. and Kim, W.J. (2000) The geology and gold-silver potential of high sulfidation mineralization at the Seongsan clay mine, South Korea. Ivanhoe Mines Ltd. company report, unpublished, 56p.
  24. Rowan, L.C. and Mars, J.C. (2003) Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data: Remote Sensing of Environment, v.84, n.3, p. 350-366. https://doi.org/10.1016/S0034-4257(02)00127-X
  25. Rowan, L.C., Hook, S.J., Abrams, J.J. and Mars, J.C. (2003) Mapping hydrothermally altered rocks at Cuprite, Nevada using the Advanced Spaceborne Thermal Emissivity and Reflection Radiometer ASTER. A new satellite-imaging system. Economic Geology, v.98, p.1019-1027. https://doi.org/10.2113/gsecongeo.98.5.1019
  26. Rowan, L.C., Schmidt, R.G. and Mars, J.C. (2006) Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data: Remote Sensing of Environment, v.104, p.74-87. https://doi.org/10.1016/j.rse.2006.05.014
  27. Rye, R.O., Bethke, P.M. and Wasserman, M.D. (1992) The stable isotope geochemistry of acid-sulfate alteration. Economic Geology, v.87. p.225-262. https://doi.org/10.2113/gsecongeo.87.2.225
  28. Sillitoe, R.H. (1993) Epithermal models: Genetic types, geometrical controls, and shallow features. Geological Associatioin of Canada Special paper 40, p.403-417.
  29. Spatz, D.M. and Wilson, R.T. (1995) Remote sensing characteristics of porphyry copper system, western America Cordillera, in Pierce, F.W. and Bolm, J.G., eds., Arizona Geological Society Digest, v.20, p.94-108.
  30. Steven, T.A. and Ratt, J.C. (1960) Geology of ore deposits of the Summitville district, San Juan Mountains, Colorado. U.S. Geological Survey Professional Paper 343, 70p.
  31. Stoffregen, R.E. (1987) Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Economic Geology, v.82, p.1575-1591. https://doi.org/10.2113/gsecongeo.82.6.1575

Cited by

  1. Analysis of Landslide locations using Spectral Reflectance of Clay Mineral and ASTER Satellite Image vol.24, pp.3, 2014, https://doi.org/10.9720/kseg.2014.3.411
  2. Research on Hyperspectral Identification of Altered Minerals in Yemaquan West Gold Field, Xinjiang vol.11, pp.2, 2019, https://doi.org/10.3390/su11020428