에틸렌-프로필렌 디엔 단량체/폴리프로필렌/클레이 나노복합체의 연소성

Combustive Properties of Ethylene-Propylene Die Monomer/Polypropylene/Clay Nanocomposites

  • 정영진 (강원대학교 소방방재공학과)
  • 투고 : 2011.10.18
  • 심사 : 2011.12.09
  • 발행 : 2011.12.31

초록

에틸렌-프로필렌 디엔 단량체/폴리프로필렌에 바탕을 둔 에틸렌-프로필렌 디엔 단량체, 폴리프로필렌, 산화아연, 스테아르산, 그리고 클레이의 효과에 대하여 연소성을 조사하였다. 에틸렌-프로필렌 디엔 단량체/폴리프로필렌/클레이 나노복합체는 성형 후 콘칼로리미터(ISO 5660-1)를 이용하여 연소시험을 하였다. 그 결과 나노복합체는 에틸렌-프로필렌 디엔 단량체/폴리프로필렌 단독 조성에 비하여 최대열방출률을 감소시켰다. 이에 반하여 고무 연화제로 사용된 스테아르산은 자체의 연소성에 의하여 평균열방출률을 증가시켰다.

Effects of ethylene-propylene diene monomer (EPDM)/polypropylene (PP), zinc oxide, stearic acid, and clay on the combustive properties based on EPDM/PP were investigated. The EPDM/PP/clay nanocomposites was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). It was found that the combustive properties in the nanocomposites decreased due to the fire resistance compared with unfilld EDPM/PP. The nanocomposites showed the lower peak heat release rate (PHRR) than that of virgin EPDM/PP, while stearic acid for softening ruber increased the mean heat release rate (MHRR) by itself, combustible.

키워드

참고문헌

  1. G.L. Nelson, "Fire and Polymers", American Chemical Society, Washington DC.(1990).
  2. M. Lewis, S.M. Altas, and E.M. Pearce, "Flame- Retardant Polymer Materials", Plenum Press, New York(1975).
  3. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, and O. Kamjngato, "Swelling behavior of Montmorillonite Cation Exchanged for ${\omega}-Amino $Acids by $\xi-Caprolactam$", J. Mater. Res., Vol.8, pp.1174-1178(1993). https://doi.org/10.1557/JMR.1993.1174
  4. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigato, "Synthesis of Nylon 6-clay Hybrid", J. Mater. Res., Vol.8, pp.1179-1184(1993). https://doi.org/10.1557/JMR.1993.1179
  5. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, "Mechanical Properties of Nylon 6-Clay Hybrid", J. Mater. Res., Vol.8, pp.1185-1189(1993). https://doi.org/10.1557/JMR.1993.1185
  6. P.B Massersmith and E.P. Giannelis, "Synthesis and Barrier Properties of Poly(E-caprolactone)-Layered Silicate Nanocomposites", J. Polym. Sci.: Part A: Polym. Chem., Vol.33, pp.1047-1057(1995).
  7. Z. Wang and T.J. Piannavaia, "Nanolayer Reinforcement of Elastomeric Polyurethane", Chem. Mater., Vol.10, pp.3769-3771(1998). https://doi.org/10.1021/cm980448n
  8. R. Krishnamoorti and E.P. Giannelis, "Rheology of End-Tethered Polymer Layered Silicate Nanocomposites", Macromolecules, Vol.30, pp.4097- 4102(1997). https://doi.org/10.1021/ma960550a
  9. A. Oya and Y. Kurokawa, "Factors Controlling Mechanical Properties of Clay Mineral/Polypropylene Nanocomposites", J. Mater. Sci., Vol.35, pp.1045- 1050(2000). https://doi.org/10.1023/A:1004773222849
  10. T.L. Padmananda, D. Kaviratna, and T.J. Pinnavaia, "On the Nature of Polyimide-Clay Hybrid Composites", Chem Mater., Vol.6, pp.573-575(1994). https://doi.org/10.1021/cm00041a002
  11. R.A. Vaia, K.D. Jandt, E.J. Kramer, and E.P. Giannelis, "Kinetic of Polymer Melt Intercalation", Macromolecules, Vol.28, pp.8080-8085(1995). https://doi.org/10.1021/ma00128a016
  12. P.B. Masscrsmith and E.P. Giannelis, "Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites", Chem Mater., Vol.6, pp.1719-1725 (1994). https://doi.org/10.1021/cm00046a026
  13. T.J. Pinnavaia, "Intercalated Clay Catalysts", Science, Vol.220, pp.365-371(1983). https://doi.org/10.1126/science.220.4595.365
  14. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", eds. S.J. Grayson and D.A. Smith, Elsevier Appied Science Publisher, London, UK.(1986).
  15. M.M. Hirschler, "Thermal Decomposition and Chemical Composition", American Chemical Society Symposium Series 797(2001).
  16. ISO 5660-1, "Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method)", Genever (2002).
  17. Y.C. Yang and Y.W. Chang, "Fracture Behavior of EPDM/Clay Composite", Applied Chemistry, Vol.4, No.2, pp.85-88(2000).
  18. Y.J. Chung, "Comparison of Combustion Properties of Native Wood Species Used for Fire Pots in Korea", J. Ind. Eng. Chem., Vol.16, pp.15-19(2010). doi: 10.1016/j.jiec.2010.01.031.
  19. F.M. Pearce, Y.P. Khanna, and D. Raucher, "Thermal Analysis in Polymer Flammability", Chap. 8, Thermal Characterization of Polymeric Materials, Academic Press, New York, U.S.A.(1981).
  20. J.D. DeHaan, "Kirks's Fire Investigation", Fifth Edition, pp.84-112, Prentice Hall(2002).
  21. V. Babrauskas, "Development of Cone Calorimeter- A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption", Fire and Materials, Vol.8, No.2, pp.81-95(1984). doi: 1002/fam.810080206. https://doi.org/10.1002/fam.810080206
  22. N.N. Greenwood and A. Earnshow, "Chemistry of Elements", Butterworth-Heinemann, Oxford(1997). ISBN 0080379419.
  23. M.M. Hirscher, "Reduction of Smoke Formation from and Flammability of Thermoplastic Polymers by Metal Oxides", POLYMER, Vol.25(March), pp.405-411(1984). https://doi.org/10.1016/0032-3861(84)90296-9
  24. J. Zhang, D.D. Jiang, and C.A. Wilkie, "Thermal and Flame Properties of Polyethylene and Polypropylene Nanocomposites Based on an Oligomerically-modified Clay", Polm. Degrad. Stab., Vol.91, pp.298-304 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.05.006
  25. J. Woodtthikkanokkhan and P. Tunjongnawin, "Investigation of the Effect of Mixing Schemes on Cross-link Distribution and Tensile Properties of Natural-acrylic Rubber Blends", Polymer Testing, Vol.22, No.3, pp.305-312(2002).
  26. V. Babrauskas and S.J. Grayson, "Heat Release in Fires", E & FN Spon (Chapman and Hall), London, UK.(1992).
  27. V. Babrauskas, "Heat Release Rate", Section 3, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A.(2008).
  28. J.G. Quintire, "Principles of Fire Behavior", Chap. 5, Cengage Learning, Delmar, U.S.A.(1998).